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Abstract

This paper presents a hybrid signature verification frame-
work integrating offline handwritten signature images and
online dynamic signing information for reliable biometric
authentication. Offline signatures are represented using struc-
tural gradient-based descriptors, while online signatures are
characterised through temporal and statistical features ex-
tracted from log trajectories. Both modalities are fused
into a unified feature space, normalised, and reduced using
principal component analysis for efficient learning. Writer-
independent evaluation is performed using group-based cross-
validation with cross-writer mismatch modelling to strengthen
resistance against multimodal forgery attempts. Random
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Forest and Gradient Boosting classifiers are trained and
combined through ensemble probability fusion, while fuzzy
membership based decision support improves stability un-
der uncertain verification conditions. Experimental results
show competitive writer-independent accuracy with very
low false rejection and equal error rates, confirming the ef-
fectiveness of multimodal fusion and fuzzy ensemble learn-
ing. The proposed framework provides a practical and ro-
bust solution for secure signature-based authentication sys-
tems.

Key Words and Phrases: Signature; Verification; Biomet-
rics; Offline; Online; Fusion; Fuzzy; Ensemble; Authentication; Ac-
curacy; FAR; FRR; EER.

1 Introduction

Handwritten signature verification remains one of the most widely
accepted biometric authentication techniques because it is socially
trusted, legally recognized, and easy to deploy in daily financial
and administrative processes. Unlike physiological biometrics, sig-
natures represent a behavioral trait that naturally varies with time,
writing conditions, and the signer’s physical state. These varia-
tions make the verification task challenging, particularly in writer-
independent settings where the system must generalize to unseen
users and skilled forgeries.

Recent progress in offline handwritten signature verification has
been strongly influenced by d eep | earning a rchitectures t hat aim
to learn discriminative representations directly from signature im-
ages. Li et al. proposed a multi-scale CNN-CrossViT network that
integrates convolutional feature extraction with transformer-based
cross-attention to capture both local stroke patterns and global
structural dependencies, achieving strong performance on public
datasets [1]. Similarly, Xiao and Wu introduced a spatial trans-
former network framework to improve robustness against geometric
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distortions by aligning signatures before feature learning [2]. These
studies highlight the importance of multi-scale representation and
spatial normalization for reliable verification.

Beyond signature verification, related research in writer identi-
fication has showd that robust feature modeling remains central for
discriminating writing styles under constrained training conditions.
Khan et al. presented bagged discrete cosine transform features for
text-dependent writer identification, showing t hat ensemble-based
representations can improve robustness [3]. Optimization strategies
have also been explored for learning under complex constraints.
Wei et al. proposed a coevolutionary neural-based optimization
algorithm for constrained nonconvex problems, providing insights
into improving learning stability in difficult biometric scenarios [4].
Adversarial learning has further contributed to signature verifica-
tion, where Li et al. introduced an adversarial variation network to
enhance generalization under intra-class variability [5].

Several end-to-end deep architectures have been developed for
offline ve rification. Lu et al. pro posed a ¢ ut -and-compare net-
work that performs verification t hrough s tructured c omparison of
signature regions [6]. Jain et al. showd that even shallow convo-
lutional networks can provide competitive baselines when trained
with suitable feature representations [7]. Deep learning improve-
ments in other imaging domains, such as cascaded fully convolu-
tional networks with variable focal loss, also motivate the design of
robust loss functions for handling imbalance and difficult samples
[8]. High-dimensional representation learning has been extended
through tensor-based approaches such as NeuLF'T, which addresses
incomplete data modeling in complex feature spaces [9].

Traditional handcrafted approaches remain relevant as they pro-
vide interpretable structural cues. Zois et al. proposed poset-
oriented grid features for offline verification and quality character-
ization [10]. Bharathi and Shekar employed chain code histograms
with support vector machines, illustrating the effectiveness of direc-
tional contour descriptors [11]. Graph-based learning has also been
explored, where Maergner et al. combined graph edit distance with
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triplet networks to improve verification performance [12]. These
works indicate that hybrid strategies combining learned and struc-
tural features can strengthen robustness.

Feature selection and streaming feature modeling have also been
investigated. Wu et al. proposed latent factor analysis for online
sparse streaming feature selection, which is relevant for dynamic
biometric systems [13]. Fuzzy similarity modeling has been applied
by Alaei et al., who developed an interval symbolic representation
with fuzzy similarity measures to handle uncertainty in signature
traits [14]. Optimization-enhanced latent factor methods have fur-
ther contributed to stable representation learning, as shown by Luo
et al. through generalized Nesterov acceleration in adaptive latent
factor analysis [15].

Multi-task learning has emerged as a useful paradigm in signature-
related biometrics. Jain et al. showd multi-task learning using
GNet features with SVM classifiers for signature identification [16].
Matrix factorization approaches with symmetry and nonnegativity
constraints have also supported community detection and struc-
tured representation learning, offering transferable concepts for bio-
metric clustering [17]. Sharif et al. emphasized best feature selec-
tion strategies for offline verification frameworks, reinforcing the im-
portance of discriminative feature pruning [18]. Geometric feature
design has been further explored by Khan et al., who proposed novel
geometric descriptors for offline writer identification [19]. Texture-
based fusion strategies have been investigated by Bhunia et al.,
where hybrid texture feature fusion improved verification accuracy
20].

Recent advances increasingly focus on generalizable deep rep-
resentations. Luo et al. proposed pointwise mutual information
incorporated symmetric nonnegative matrix factorization for ac-
curate structure discovery, which supports robust feature mod-
eling in high-dimensional biometric spaces [21]. Earlier writer-
independent verification methods such as surroundedness feature
extraction showd that local shape context remains important for
distinguishing genuine and forged signatures [22]. Synthetic signa-
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ture generation combined with Siamese neural networks has been
proposed by Ruiz et al., showing that compositional augmentation
can reduce data scarcity [23]. Comparative evaluations of feature
descriptors such as SURF and SIFT further motivate careful se-
lection of discriminative local representations [24]. Hu and Chen
showd that classifier combinations, such as AdaBoost over pseudo-
dynamic features, can improve offline verification performance [25].
Finally, Jain et al. confirmed that geometric feature modeling with
neural classifiers remains a competitive baseline for signature veri-
fication [26].

Overall, the literature indicates that signature verification re-
quires robust multi-scale representation, strong generalization un-
der writer-independent constraints, and effective fusion of comple-
mentary information sources. Motivated by these findings, the
present work develops a hybrid signature verification framework
that integrates offline image-based descriptors with online dynamic
traits, supported by machine learning classification and fuzzy decision-
level fusion to improve reliability against skilled forgeries.

1.1 Contributions of this work

i. A hybrid offline-online signature verification framework is im-
plemented by fusing static image descriptors with dynamic
behavioural log features.

ii. Cross-writer mismatch modelling is incorporated to strengthen
security against multimodal forgery attempts under writer-
independent conditions.

iii. An ensemble learning strategy combining Random Forest and
Gradient Boosting is developed to improve discrimination be-
tween genuine and forged signatures.

iv. A fuzzy membership based decision fusion mechanism is in-
troduced to handle uncertainty in borderline verification cases
and reduce abrupt thresholding errors.
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v. Extensive evaluation using FAR, FRR, EER, ROC-AUC, and
aggregated cross-validation confirms competitive writer-independent
verification performance.

2 Implemented Hybrid Signature Veri-
fication Framework

This research implements a hybrid signature verification framework
that integrates both offline and online signature modalities into a
unified machine learning based authentication system. The offline
modality represents the static visual appearance of a handwritten
signature captured as an image, whereas the online modality rep-
resents the dynamic behavioural information recorded during the
signing process, such as pen trajectory, time variation, and pres-
sure signals. The motivation behind using both modalities is that
skilled forgeries may imitate the visual shape of a signature, but
replicating the underlying writing dynamics remains significantly
more difficult. Therefore, combining offline and online evidence
improves robustness and reliability in biometric verification.
Let a signature sample be represented by the pair

S=(,L), (1)

where [ denotes the offline signature image and L denotes the on-
line log file containing temporal and dynamic measurements. The
objective of the system is to determine whether the given signature
belongs to a genuine writer or represents a forged or mismatched
instance.

The verification task is formulated as a binary classification
problem. Each sample is associated with a label

y €{0,1}, (2)

where y = 0 indicates a genuine and consistent signature pair, and
y = 1 indicates a forged or inconsistent signature.
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The complete implemented framework consists of five major
stages: dataset collection, preprocessing, feature extraction, hy-
brid feature fusion with dimensionality reduction, and classification
with fuzzy decision support. The final deployed system provides
both writer-independent generalisation and robust security against
cross-writer modality mismatches.

2.1 Dataset Description

The experiments in this work are conducted on a multimodal signa-
ture dataset collected from more than 120 writers. For each writer,
two complementary modalities are recorded: offline handwritten
signature images and online dynamic writing logs. The dataset is
organised in a writer-wise folder structure, where each writer direc-
tory contains two subfolders: an Image folder and a Log folder.

The Image folder contains offline signature images captured us-
ing an Android-based acquisition application rather than conven-
tional scanning. This acquisition setting introduces realistic varia-
tions in background, illumination, and writing surface conditions.
The Log folder contains online signature trace files stored in .txt
format, generated during signing on a mobile device or digital writ-
ing pad.

Each online log file records the real-time pen-tip trajectory using
six parameters:

TouchEvent Time | X | Y | rawX | rawY | Pressure.  (3)

These signals capture temporal progression, spatial movement,
stroke direction, and pressure variation throughout the signing pro-
cess. Such behavioural characteristics are highly writer-specific and
difficult to reproduce accurately in skilled forgery attempts.

By combining offline im age-based fe atures re presenting signa-
ture shape and texture with online dynamic features representing
speed, timing, movement continuity, and pressure, the proposed
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system learns both the global visual appearance and the underly-
ing neuromotor behaviour of the signer. This multimodal dataset
configuration reflects practical verification environments in banks,
offices, and institutional authentication settings, where signatures
may be acquired either on paper (offline) or through digital devices
(online).

2.2 Offline Signature Processing and Feature Ex-
traction

The offline component of the system focuses on extracting discrim-
inative structural and texture information from signature images.
Each signature image is first converted into grayscale and resized to
a fixed spatial resolution of 256 x 256 pixels. This standardisation
ensures consistent feature dimensionality across all samples.

Let the grayscale signature image be denoted as

Ly(z,y), (4)

where (x,y) represents pixel coordinates. The image is normalised
to the range [0, 1] as

Iy(z,y)
I(x,y) = TR (5)
To represent the offline signature effectively, Histogram of Ori-
ented Gradients (HOG) descriptors are employed. HOG captures
local gradient orientation patterns that reflect the stroke direction
and structural layout of the signature. The gradient components
are computed as

Gm = In(x + 17y> - In(l‘ - 17y)7 (6)

Gy=I,(x,y+1)—IL,(z,y—1). (7)

The gradient magnitude and orientation are then obtained by

M(z,y) = /G + G, (8)
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0(z,y) = tan"! (%) . 9)

The image is divided into small spatial cells, and within each
cell, a histogram of gradient orientations is constructed. The final
offline feature vector is formed by concatenating the histograms
across all cells and applying block normalisation. Therefore, the
offline signature representation is expressed as

Xof € R, (10)

where Dog = 8100 in the implemented system.

2.3 Online Signature Processing and Feature Ex-
traction

The online component captures the behavioural characteristics of
the signing process. Each online signature log file contains sequen-
tial measurements of timestamp, pen coordinates, and pressure val-
ues. A sequence of points is represented as

L= {(tiaxhyiapi)}ij\il? (11)

where t; denotes the timestamp, (x;,y;) denotes pen position, p;
denotes pen pressure, and /N denotes the number of sampled points.
The temporal difference between consecutive samples is

At = tig — t, (12)
and the spatial displacement is
Ad; = /(g1 — 23)% + (Y1 — i) (13)
The instantaneous writing speed is computed as

A
AL

(14)

(%
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The total signing duration is
T - tN - tl, (15)

and the total stroke length is

N—-1
L= Ad;. (16)
=1

From these signals, a fixed-length statistical feature vector of
dimension 25 is extracted, including temporal statistics, spatial dis-
tribution measures, speed percentiles, and pressure characteristics.
The online representation is denoted as

Xon € R®. (17)

These features capture neuromotor behaviour, which is difficult
for an impostor to reproduce accurately.

2.4 Hybrid Feature Fusion

The implemented system performs early-level feature fusion by con-
catenating offline and online feature vectors into a unified represen-
tation. This hybrid feature vector is defined as

Xfused = [Xoff || Xon] ) (18)

where || denotes vector concatenation.
Thus, the final fused feature space has dimension

Diused = Dog + 25 = 8125, (19)

This hybrid representation integrates complementary evidence
from both modalities, enabling stronger discrimination between
genuine signatures and forged or mismatched signatures.
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2.5 Feature Normalisation and Dimensionality
Reduction

Before classification, the fused feature vectors are standardised us-
ing z-score normalisation. For each feature dimension k, the nor-
malised value is computed as
2 = u) (20)
O
where p; and oy represent the mean and standard deviation esti-
mated from the training data.
To reduce redundancy and improve generalisation, Principal
Component Analysis (PCA) is applied. PCA projects the stan-
dardised feature vector into a lower-dimensional subspace:

Z = WTXfuseda (21)

where W contains the top eigenvectors corresponding to the largest
eigenvalues of the covariance matrix. In this framework, the fea-
ture dimension is reduced to 256 principal components. The PCA
dimension was fixed to 256 components as a balanced trade-off be-
tween information preservation and computational efficiency. The
fused feature vector has very high dimensionality, and retaining
all components increases redundancy and risks overfitting under
writer-independent evaluation. Reducing the space to 256 principal
components preserves the dominant variance of the hybrid offline—
online representation while significantly lowering training complex-
ity and improving generalisation across unseen writers. Therefore,
PCA=256 provides an effective compact e mbedding for stable en-
semble classification.

2.6 Cross-Writer Mismatch Modelling

A major contribution of the implemented framework is the explicit
modelling of cross-writer mismatches. In practical multimodal bio-
metric systems, an attacker may attempt to combine an offline sig-
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nature of one writer with the online dynamics of another writer.
Such mismatched pairs must be rejected.
Therefore, additional negative samples are generated by com-
bining
A
Xcross = [X(()ﬂf) || X(()E)] ) A 7é Ba (22)

and assigning them the forged label y = 1. This augmentation
forces the classifier to learn modality consistency rather than relying
solely on visual similarity.

2.7 Algorithmic Flow of Feature Fusion

The overall feature fusion process is summarised in Algorithm 1.

Algorithm 1 Hybrid Feature Extraction and Fusion
Input: Offline image I, Online log sequence L
Extract offline HOG features X.g

Extract online behavioural features x,,

Fuse features using concatenation:

Xfused = [Xoffoon]

Apply z-score normalisation

Apply PCA reduction to obtain z

Output: Reduced hybrid feature vector z

2.8 Framework Illustration

Figure 1 illustrates the implemented hybrid verification pipeline.
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[Ofﬂine Image [ j Online Log L

’ HOG Feature Extraction ‘ ’ Online Feature Extraction ‘

Hybrid Feature Fusion

’ Z-score + PCA Reduction

RF / GB / Ensemble Classifier

Fuzzy Decision Support

Final Output: Genuine / Forged

Figure 1: Implemented hybrid offline-online signature verification
framework.

2.9 Hybrid Classification Models

After constructing the reduced hybrid feature representation, the
verification task is performed using supervised machine learning
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classifiers. The implemented framework employs three complemen-
tary models: Random Forest, Gradient Boosting, and an ensemble
fusion of both. These models are selected because they provide
strong discrimination performance in biometric verification while
remaining stable under writer-independent evaluation.

Let the reduced feature vector for a given signature pair be

z € R*. (23)
The classifier learns a mapping function

f(z) =9, (24)

where g € {0, 1} represents the predicted decision.

2.9.1 Random Forest Classification

Random Forest is an ensemble of decision trees trained using boot-
strap sampling and random feature selection. Each tree provides a
class prediction, and the final probability is obtained by averaging
across trees.

Let T denote the total number of trees. The probability of
forgery predicted by the Random Forest is

1
Prr(y = 1|z) =

N

> Py =1z), (25)

where P,(+) denotes the probability output of the ¢-th decision tree.
The Random Forest model is robust against overfitting d ue to

its averaging mechanism and is particularly effective i n handling

heterogeneous feature distributions from hybrid biometric inputs.

2.9.2 Gradient Boosting Classification

Gradient Boosting constructs an additive model by sequentially
training weak learners to minimise a differentiable loss function.
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In the implemented system, boosting improves sensitivity to subtle
forged patterns.
The Gradient Boosting prediction is expressed as

F(Z) = Z thm(Z% (26)

where M is the number of boosting stages, h,,(+) is the weak learner
at stage m, and 7, is its contribution weight.
The probability of forgery is then obtained using the logistic

function )

1+ exp(—F(z))
The training loss curve produced by Gradient Boosting shows

consistent convergence across cross-validation folds, indicating sta-
ble optimisation behaviour.

Pap(y = 1]z) = (27)

2.9.3 Ensemble Probability Fusion

To further improve verification reliability, the implemented frame-
work performs probability-level fusion of Random Forest and Gra-
dient Boosting outputs.

The ensemble forged probability is computed as

1
Poxs(y = 1|z) = 5 (Prr(y = 1|2) + Pop(y = 1/2)). (28)
This fusion strategy combines the stability of Random Forest
with the fine-grained sensitivity of Gradient B oosting, resulting in
improved overall accuracy and reduced false acceptance.

2.10 Fuzzy Decision Support Mechanism

A key contribution of the implemented framework is the integration
of fuzzy decision support. Instead of relying solely on a hard thresh-
old, fuzzy membership functions are used to model uncertainty in
forged probability outputs.
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Let p denote the predicted probability of forgery:
p=P(y=1Jz). (29)
Three fuzzy membership functions are defined: low, medium,
and high forgery likelihood.
2.10.1 Low Forgery Membership

The membership of the low forgery region is defined as

1, p<0.2,
fow(p) = ¢ 52, 0.2 < p < 0.4, (30)
0, p > 0.4.

2.10.2 Medium Forgery Membership

The medium region represents transitional uncertainty:

0, p <0.2,
bO92° 02<p<05
,umed<p) = O%E ’ B 7 (31)
o3, 0.5 <p<038,
0, p > 0.8.
2.10.3 High Forgery Membership
The high forgery membership is defined as
0, p < 0.6,
[ihigh(P) = § 228, 0.6 <p < 0.8, (32)
1, p > 0.8.

2.10.4 Fuzzy Decision Rule

The final fuzzy decision is obtained by selecting the membership
function with maximum activation:

- (p). 33
¢ ars ce{lovg}riz}é,high} H <p) ( )
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The predicted label is then defined as

~[1, &= nigh,
yz{ (34)

0, otherwise.

This mechanism provides a soft rejection boundary and im-
proves decision stability, especially in uncertain forged probabil-
ity regions. The fuzzy decision fusion mechanism is incorporated
to handle uncertainty in borderline verification cases where forged
and genuine probabilities overlap. Unlike hard thresholding, fuzzy
membership based reasoning provides smoother decision boundaries
and improves stability under intra-writer variations. This enhances
robustness by reducing abrupt acceptance or rejection errors in
practical authentication scenarios.

2.11 Writer-Independent Cross-Validation Strat-
egy

To ensure realistic evaluation, the implemented framework employs
writer-wise GroupKFold cross-validation. In this setting, signatures
from the same writer are never split across training and testing sets.
Let W denote the set of writers. The dataset is partitioned such

that
Wtrain N Wtest - @ (35)

This ensures that the system is evaluated in a writer-independent
manner, which is essential for practical biometric deployment.

2.12 Evaluation Metrics

The system performance is assessed using standard biometric veri-
fication metrics.
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2.12.1 Accuracy

Accuracy is defined as

TP +TN
TP+TN+ FP+FN'

Accuracy = (36)

2.12.2 False Acceptance Rate

False Acceptance Rate measures the proportion of forged samples
incorrectly accepted as genuine:

P

FAR = ———.
R FP+TN

(37)

2.12.3 False Rejection Rate

False Rejection Rate measures the proportion of genuine samples
incorrectly rejected:

FN
FRR = ———.
RR FN+TP (38)

2.12.4 Equal Error Rate

Equal Error Rate represents the operating point where FAR equals
FRR. It is obtained from the ROC curve by identifying the thresh-
old that minimises

[FPR — FNR|. (39)

A lower EER indicates a stronger biometric verification system.

2.13 Final Verification Algorithm

The complete implemented verification process is summarised in
Algorithm 2.
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Algorithm 2 Hybrid Signature Verification with Fuzzy Fusion
Input: Offline image I, Online log file L

Extract x,g from [

Extract x,, from L

Fuse features Xpsea = [Xoff||Xon]

Apply normalisation and PCA to obtain z

Compute probabilities Prr, Pgp

Compute ensemble probability Pgns

Apply fuzzy decision rule to obtain y

Output: Genuine if y = 0, Forged if y = 1

2.14 Summary of the Implemented Framework

This section presented the complete implemented hybrid signature
verification framework integrating offline structural features and
online behavioural dynamics. The framework employs early-level
fusion, dimensionality reduction, cross-writer mismatch modelling,
and robust classification using Random Forest, Gradient Boosting,
and ensemble fusion. The incorporation of fuzzy decision support
provides improved stability in uncertain verification cases. Writer-
independent evaluation confirms that the proposed system gener-
alises effectively across unseen writers while maintaining low error
rates.

3 Results and Discussion

This section presents the experimental results obtained from the
implemented hybrid offline-online signature verification framework.

The evaluation was conducted using writer-independent cross-validation,

ensuring that signatures from the same writer were never simulta-
neously present in both training and testing subsets. This setting
reflects a realistic biometric deployment scenario where the system
must generalise to unseen writers.

The proposed framework was evaluated using three classification
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strategies: Random Forest with fuzzy decision support (RF_fuzzy),
Gradient Boosting with fuzzy decision support (GB_fuzzy), and
the ensemble probability fusion model with fuzzy decision support
(ENS_fuzzy _prob). The reported results correspond to aggregated
cross-validation outputs, meaning that predictions from all folds
were combined to compute final performance metrics.

3.1 Performance Evaluation

The system performance was assessed using standard biometric ver-
ification measures, including accuracy, false acceptance rate (FAR),
false rejection rate (FRR), equal error rate (EER), and the area
under the ROC curve (AUC). These metrics provide a complete
understanding of both usability and security characteristics of the
verification system.

The aggregated performance values obtained from the experi-
mental evaluation are summarised in Table 1. The values corre-
spond exactly to the final cross-validation results printed by the
implemented training pipeline.

Table 1: Aggregated cross-validation performance of the imple-
mented hybrid signature verification models.

Model Accuracy  FAR FRR EER AUC
RF _fuzzy 0.8443 0.3114 0.0000 0.0037 0.9999
GB_fuzzy 0.9015 0.1954 0.0016 0.0060 0.9986

ENS_fuzzy_prob 0.9185 0.1620 0.0010 0.0026 0.9997

The results show that the ensemble fuzzy probability fusion
model achieves the best overall verification p erformance, with an
accuracy of 91.85% and the lowest FAR and EER values. This
confirms that combining ofHline structural evidence with online be-
havioural dynamics provides improved robustness compared to in-
dividual classifiers.
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3.2 Discussion of False Acceptance and False
Rejection Behaviour

In biometric signature verification, F AR and F RR r epresent two
critical error types. FAR indicates the proportion of forged sig-
natures incorrectly accepted as genuine, while FRR represents the
proportion of genuine signatures incorrectly rejected. A secure veri-
fication system must minimise FAR, whereas a user-friendly system
must minimise FRR.

The Random Forest fuzzy model achieves an FRR of zero, mean-
ing that no genuine signatures were rejected. However, it exhibits
the highest FAR (31.14%), indicating that a significant number of
forged samples were accepted. This behaviour suggests that the
Random Forest classifier i s highly t olerant a nd p rioritises conve-
nience over strict security.

Gradient Boosting improves this balance by reducing FAR to
19.54% while maintaining a very low FRR (0.16%). The ensemble
model further strengthens verification security by reducing FAR to
16.20%, while still maintaining an FRR close to zero. Therefore, the
ensemble provides the most appropriate trade-off b etween forgery
rejection and genuine acceptance. Although the proposed ensemble
model achieves strong writer-independent accuracy, the FAR re-
mains comparatively higher than some deep metric-learning based
approaches. This behaviour is mainly influenced by t he adopted
fuzzy membership decision strategy, which is designed to minimise
false rejections and maintain near-zero FRR for genuine users. Un-
der writer-independent evaluation with cross-writer mismatch aug-
mentation, the system is exposed to highly challenging impostor
variations, increasing the likelihood of borderline forged samples
being accepted. Therefore, the reported FAR reflects a practical
usability—security trade-off, where the framework prioritises reliable
acceptance of genuine signatures while still achieving competitive
overall verification performance.
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3.3 Receiver Operating Characteristic Analysis

The Receiver Operating Characteristic (ROC) curve evaluates the
ranking ability of the verification models across different decision
thresholds. A model with a ROC curve close to the top-left corner
indicates strong discrimination between genuine and forged signa-
tures.

The aggregated ROC curve for RF _fuzzy is shown below.

RF_fuzzy ROC Curve (CV Aggregated)

1.04
0.8 1
0.6
o
o
=
0.4 1
0.2 1
0.0 1 —— AUC=1.000
0.0 0.2 0.4 0.6 0.8 1.0

FPR

Figure 3.3: Aggregated ROC curve of the RF_fuzzy model.

The Random Forest model achieves an AUC of 0.9999, indi-
cating nearly perfect separability in terms of probability scoring.
However, despite this strong ranking performance, the final fuzzy
decision rule leads to a higher FAR, which reduces overall accuracy.

The ROC curve for the Gradient Boosting fuzzy model is pre-
sented below.
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Figure 3.3: Aggregated ROC curve of the GB_fuzzy model.
Gradient Boosting achieves an AUC of 0.9986, which remains
extremely high. The slightly lower AUC compared to Random For-
est is compensated by a stronger decision boundary, resulting in
reduced FAR and improved accuracy.
Finally, the ensemble fuzzy probability fusion ROC curve is
shown below.
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Figure 3.3: Aggregated ROC curve of the ENS_fuzzy_prob model.

The ensemble achieves an AUC of 0.9997, confirming excellent
discrimination performance. The fusion of Random Forest stabil-
ity with Gradient Boosting sensitivity leads to the most reliable
verification outcome.

3.4 Confusion Matrix Interpretation

The aggregated confusion matrix for RF_fuzzy is shown below. The
RF _fuzzy model produces 596 false acceptances, which explains its
high FAR. At the same time, it produces zero false rejections, con-
firming its usability-oriented behaviour.

RF_fuzzy Confusion Matrix (CV Aggre
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Figure 3.4: Aggregated confusion matrix of RF_fuzzy.
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Figure 3.4: Aggregated confusion matrix of GB_fuzzy.

The confusion matrix for GB_fuzzy is presented above.Gradient
Boosting reduces false acceptances to 374, significantly improving
verification security. Only three genuine samples were incorrectly

rejected, resulting in a very small FRR.

The confusion matrix for the ensemble fuzzy fusion model is

shown below.
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Figure 3.4: Aggregated confusion matrix of ENS_fuzzy_prob.

The ensemble model produces the lowest number of false ac-
ceptances (310) and only two false rejections. This confirms that
ensemble fusion provides the most reliable decision support for mul-
timodal signature verification.

3.5 Training Convergence Analysis

Gradient Boosting is the only classifier in t he implemented frame-
work that provides an interpretable training loss curve. The mean
deviance loss curve across cross-validation folds is shown below.
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Figure 3.5: Mean Gradient Boosting training loss curve across
cross-validation folds.

The curve shows smooth and stable convergence over boosting
iterations. The consistent reduction in deviance loss indicates that
the model learns progressively better decision boundaries without
instability or divergence.

3.6 Comparative Evaluation with Existing State-
of-the-Art Methods

To validate the effectiveness of the implemented hybrid offline—
online signature verification framework, a comparative evaluation
is performed against recent writer-independent signature verifica-
tion systems reported in SCl-indexed literature. The comparison is
conducted using the same biometric verification measures, includ-
ing accuracy, FAR, and FRR, which are widely adopted in signature
authentication studies.

The false acceptance rate and false rejection rate are defined as

PP

FAR = 75 7w (40)
and N
FRR:—FN+TP. (41)
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Table 2 presents the comparative results between the proposed
hybrid ensemble fuzzy fusion model and representative state-of-the-

art approaches.

Table 2: Comparison of the proposed hybrid framework with recent

writer-independent signature verification methods.

Model (Reference) Accuracy (%) FAR (%) FRR (%)
SigNet ([1]) 84.64 15.36 15.36
IDN ([1]) 93.04 8.99 8.99
HTCSigNet ([1]) 95.26 4.61 4.61
CNN-CrossViT ([1]) 92.33 8.12 8.12
DeepHSV ([2]) 86.66 - -
ISNN ([2]) 88.98 - -
Scientific Reports Model ([2]) 91.76 6.71 6.71
Proposed ENS_fuzzy prob (This Work) 91.85 16.20 0.10

The comparative results indicate that the proposed ensemble
fuzzy probability fusion framework achieves a writer-independent
accuracy of 91.85%, which is consistent with the performance re-
ported in existing works. The proposed system also produces an
extremely low FRR of 0.10%, demonstrating that genuine users are
almost never rejected. This behaviour is mainly due to the fuzzy
membership based decision support, which reduces hard boundary
errors in uncertain verification cases.

Although the FAR of the proposed framework is higher than
deep metric-learning based systems, the overall accuracy remains
competitive. The results confirm t hat t he h ybrid fusion of offline
structural evidence and online behavioural dynamics provides a re-
liable authentication solution under writer-independent evaluation
conditions.
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4 Conclusion

This work developed and implemented a hybrid offline—online signa-
ture verification framework by fusing static handwritten image de-
scriptors with dynamic behavioural features extracted from online
log data. The proposed ensemble fuzzy probability fusion model
achieved an aggregated writer-independent accuracy of 91.85%, shows
strong authentication capability across unseen writers. The system
produced a false acceptance rate of 16.20% and an extremely low
false rejection rate of 0.10%, indicating that genuine users were al-
most never incorrectly rejected. In addition, the equal error rate
of 0.26% confirms stable verification performance at the operating
point where acceptance and rejection errors are balanced. The high
ROC-AUC value of 0.9997 further highlights excellent separability
between genuine and forged signatures. Overall, the results vali-
date that multimodal feature fusion combined with fuzzy decision
support provides a reliable and practical biometric signature veri-
fication solution for secure document authentication.
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