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Abstract

The Cloud of Things (CoT) integrates large-scale In-ternet
of Things (IoT) devices with cloud computing ser-vices to
support smart applications such as healthcare mon-itoring,
industrial automation, and smart city infrastruc-ture. However,
the distributed and resource- constrained nature of IoT devices,
combined with centralized cloud de-pendency, makes CoT
environments highly vulnerable to Denial-of-Service (DoS) and
Distributed Denial-of-Service (DDoS) attacks. This paper
proposes a hybrid machine learning based intrusion detection
and mitigation frame-work designed specifically f or C oT s
ystems. T he detection layer is implemented using an optimised
feature representa-tion obtained through Particle Swarm
Optimization based feature selection, followed by supervised
classification using
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Naive Bayes, Support Vector Machine, and a tuned Ensem-
ble model. Experimental evaluation demonstrates that the
ensemble classifier achieves strong generalization, with ac-
curacy above 98.7% and near-perfect recall, ensuring that
attack flows are rarely missed. Confusion matrix analy-
sis confirms a substantial reduction in false negatives com-
pared to individual models, supporting reliable early de-
tection. To extend beyond offline classification, the tuned
ensemble detector is integrated into a CoT mitigation simu-
lator implementing hierarchical response policies, including
rate limiting, flow quarantine, ACL blocking, and escalation
to cloud-level scrubbing. Simulation results show high de-
tection coverage, effective recovery performance, and stable
throughput under heterogeneous attack scenarios. Overall,
the proposed framework provides an accurate, scalable, and
operationally resilient solution for securing Cloud of Things
deployments against disruptive DoS attacks.

KeyWords: Cloud of Things, Denial-of-Service Attack, Intrusion
Detection System, Ensemble Learning, Mitigation and Recovery.

1 Introduction

The rapid expansion of digital connectivity has transformed the way
modern services are delivered. Devices that were once isolated, such
as household appliances, medical monitors, industrial sensors, and
agricultural controllers, are now connected through networks and
continuously exchange information. This large-scale connectivity
is commonly described as the Internet of Things (IoT). IoT has
enabled smart environments where systems can sense conditions,
transmit data, and support automated decision-making. Applica-
tions such as smart homes, healthcare monitoring, industrial au-
tomation, transportation management, and smart farming depend
heavily on IoT-driven communication. However, the same growth
that makes IoT valuable also creates major operational challenges.
Many IoT devices are limited in processing power, memory, energy
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capacity, and built-in security mechanisms. These limitations make
it difficult to manage large de ployments and protect them against
modern cyber threats [1].

To overcome the constraints of IoT devices, cloud computing has
been increasingly integrated into IoT ecosystems. Cloud platforms
provide scalable storage, high-speed computation, virtualization,
and centralized resource control. This integration has led to the
concept known as the Cloud of Things (CoT). CoT combines the
sensing and connectivity of IoT devices with the flexibility and pro-
cessing capability of cloud infrastructures. In this architecture, IoT
devices generate raw data, middleware gateways manage commu-
nication and filtering, and cloud servers perform analytics, storage,
and service delivery. CoT therefore supports real-time applications
that require continuous access, large-scale processing, and reliable
system coordination [2].

Although CoT offers significant benefits, it also introduces com-
plex security risks. The interaction of millions of low-power de-
vices with centralized cloud services increases the number of attack
surfaces. Attackers may target weak IoT devices, exploit insecure
gateways, misuse cloud-based APIs, or disrupt communication pro-
tocols. The threat landscape in CoT is therefore broader and more
dynamic than in traditional networks. Security challenges become
more severe because loT devices are widely distributed, often de-
ployed without strong protection, and frequently operate with out-
dated firmware. A sa r esult, C oT e nvironments a re h ighly vul-
nerable to coordinated cyberattacks that aim to disrupt essential
services [3].

Among the most damaging threats in CoT deployments are
denial-of-service (DoS) and distributed denial-of-service (DDoS) at-
tacks. These attacks attempt to overwhelm network or cloud re-
sources by flooding them with excessive traffic, making services un-
available to legitimate users. In CoT systems, the impact of such
attacks can be particularly disruptive because cloud infrastructures
often support critical real-time applications. When DDoS attacks
succeed, delays increase, service quality drops, and mission-critical
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operations such as healthcare monitoring or industrial control may
fail. The distributed nature of IoT devices further amplifies this
risk, as attackers can compromise large numbers of devices and
coordinate them into botnets that generate massive traffic floods
[4].

Modern IoT botnets have demonstrated how dangerous such at-
tacks can become. Malware families such as Mirai and its variants
spread by exploiting weak passwords and insecure device config-
urations. Once devices are compromised, attackers can activate
them simultaneously to launch coordinated floods a gainst cloud
servers. These botnets generate diverse traffic patterns, including
SYN floods, UDP fl oods, and HT TP re quest bu rsts. Such attack
strategies evolve continuously, making detection difficult. CoT en-
vironments are therefore exposed not only to high-volume attacks
but also to adaptive and stealthy patterns that mimic legitimate
device communication [5].

Traditional defense mechanisms have been widely applied in net-
work and cloud security. Signature-based intrusion detection sys-
tems rely on known attack patterns stored in databases. When
traffic matches a si gnature, an alert is ra ised. Th ese sy stems are
effective against previously observed attacks but fail against new or
modified t hreats. Statistical anomaly detection techniques instead
rely on thresholds, identifying deviations in packet rates, flow du-
ration, or entropy measures. While anomaly detection can identify
unknown attacks, it often generates high false positives in CoT en-
vironments because [oT traffic naturally varies depending on device
behavior, environmental conditions, and firmware u pdates. These
limitations reduce the reliability of conventional approaches when
deployed at scale in CoT systems [6].

Because of these weaknesses, machine learning has become an
important direction for intrusion detection research. Machine learn-
ing models can analyze large volumes of traffic data, id entify hid-
den patterns, and classify flows as benign or m alicious. Algorithms
such as support vector machines, random forests, gradient boost-
ing models, and Naive Bayes classifiers have been widely studied
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for DDoS detection. These methods provide adaptability beyond
static rules and can improve detection accuracy when trained on
representative datasets. However, their performance depends heav-
ily on feature selection, traffic diversity, and the ability to generalize
across evolving attack strategies [7].

Deep learning further extends these capabilities by learning com-
plex representations directly from data. Convolutional neural net-
works can capture structural relationships among traffic features,
while recurrent architectures such as LSTM and GRU networks
model temporal dependencies in sequential traffic flo ws. Autoen-
coders support unsupervised anomaly detection by learning nor-
mal traffic patterns and flagging deviations through reconstruction
error. Hybrid deep learning models combine spatial and tempo-
ral learning to improve robustness against sophisticated attacks.
These approaches have shown strong performance in experimental
evaluations, but they often require high computational resources,
raising challenges for real-time deployment in resource-constrained
IoT environments [8].

Ensemble learning has also emerged as a powerful strategy for
improving intrusion detection reliability. By combining multiple
classifiers t hrough voting or stacking, e nsemble models reduce the
weaknesses of individual algorithms and provide stronger general-
ization. In CoT environments where traffic be havior ch anges fre-
quently, ensemble learning offers stability and reduces false alarms.
Stacking ensembles, in particular, integrate multiple base learners
with a meta-classifier, often achieving higher accuracy than single-
model approaches. Such methods are promising for CoT security
because they balance detection performance with adaptability [9].

Despite progress in learning-based detection, important chal-
lenges remain unresolved. CoT environments generate traffic at
extremely high speed and volume, requiring detection systems that
are both accurate and computationally efficient. At tack patterns
evolve rapidly, meaning that models trained on historical data may
become outdated. Furthermore, detection alone is not sufficient.
CoT systems also require mitigation and recovery mechanisms that
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can respond quickly to attacks, restore services, and maintain ac-
ceptable performance under stress. Many existing studies focus
mainly on classification accuracy without addressing how detected
attacks should be handled operationally in real deployments [10].

Another critical issue lies in the availability and suitability of
datasets used for evaluation. Public intrusion detection datasets
such as CAIDA traces, CIC-DD0S2019, CIC-IDS2017, and NSL-
KDD have been widely used in research. While these datasets
provide valuable benchmarks, many are collected under laboratory
conditions or do not fully represent the heterogeneity of CoT en-
vironments. This creates a gap between experimental performance
and real-world deployment reliability. Effective CoT intrusion de-
tection therefore requires careful dataset selection, feature engineer-
ing, and validation across diverse attack scenarios [11].

To address these concerns, recent research has explored dis-
tributed and multi-layer detection strategies. Approaches such as
federated learning allow edge gateways to train local models and
share updates without sending raw traffic to ce ntralized servers,
improving privacy and scalability. SDN-based architectures enable
programmable network control, allowing controllers to enforce mit-
igation policies dynamically when attacks are detected. Graph-
based learning methods have also been proposed to capture re-
lational information between devices and flows. T hese advanced
strategies highlight that CoT security requires integrated solutions
that operate across devices, gateways, and cloud infrastructures
[12].

This research builds on these directions by focusing on the de-
velopment of an intrusion detection and mitigation framework tai-
lored for Cloud of Things environments. The proposed approach
integrates machine learning-based detection with mitigation actions
and recovery workflows, aiming not only to classify attacks but also
to maintain service continuity during disruption. By combining de-
tection accuracy with operational response, the framework supports
a more complete defense strategy for CoT deployments. The effec-
tiveness of such systems must be evaluated not only through clas-
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sification metrics but also through network-level indicators such as
throughput, delay, resource utilization, and recovery efficiency [13].
In summary, intrusion detection in the Cloud of Things is a crit-
ical research problem because CoT infrastructures support essential
applications that must remain available, reliable, and secure. The
increasing scale of IoT deployments, combined with the evolving
strength of DDoS attacks, demands adaptive defense mechanisms
that go beyond traditional methods. Machine learning, deep learn-
ing, and ensemble strategies offer p romising a dvances, b ut they
must be combined with mitigation and recovery capabilities to
provide practical protection. This study contributes toward this
goal by developing a hybrid intrusion detection framework designed
specifically for the unique challenges of CoT environments.

2 Related Work

Research on intrusion detection and distributed denial-of-service
(DDoS) defense in Cloud of Things (CoT) environments has ex-
panded rapidly in recent years. Existing studies can be broadly
grouped into software-defined n etworking ( SDN) b ased detection
frameworks, deep learning approaches, ensemble learning systems,
federated and distributed security models, and benchmark dataset
contributions. The following literature review highlights key works
that have shaped modern DDoS detection research in IoT, SDN,
and CoT contexts.

Table 1: Literature Review of DDoS Detection Approaches in
CoT/SDN

328



International Journal of Applied Mathematics
Volume 38 No. 2 2025, 322-345
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

learning model

traffic traces

Ref. | Method Used | Dataset / | Key Contribution
Setup
[14] | Deep  learning | SDN flow statis- | Improved detection stabil-
classifier tics testbed ity under high-rate flooding
attacks.
[15] | Temporal deep | Low-rate stealth | Early recognition of inter-

mittent and subtle attack
patterns.

[16]

Mininet-based
traffic  genera-
tion

Synthetic la-
beled SDN
DDoS traces

Supports reproducible
benchmarking for intrusion
detection research.

[17]

Topology-aware
dataset design

Tree-SDN  hier-
archical IoT sim-
ulation

Introduced topology-
level features for early
aggregation-node detection.

tion + Ensemble
learning

tom SDN traces

[18] | Mixed-rate HLD-DDoSDN | Provides both high-rate and
benchmark dataset low-rate attack samples for
dataset evaluation.

[19] | Feature  selec- | Public and cus- | Reduced redundant features

to improve detection speed
and accuracy.

filtering + ML
controller

city IoT traffic

[20] | Metaheuristic Multi-vector Optimizer-based hyperpa-
deep model | SDN attack | rameter tuning improves
optimization flows adaptability of IDS.

[21] | Hybrid gateway | Simulated smart | Reduced controller overload

by blocking obvious mali-
cious flows early.

[22]

Distributed edge
+ controller de-
tection

[oT traffic with
synthetic flood-
ing

delay
edge

Lower  detection
through lightweight
anomaly screening.

Continued on next page
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hybrid deep IDS

DDoS dataset

Ref. | Method Used | Dataset / | Key Contribution
Setup
[23] | DBN + LSTM | Controlled SDN | Captured both hierarchical

feature patterns and tempo-
ral attack behavior.

gation in large
SDN

deployment

[24] | CNN-LSTM Public + gen- | Outperformed single deep
hybrid intrusion | erated DDoS | learning models across mul-
detection traces tiple attack types.

[25] | Deep learn- | Flow-based SDN | Demonstrated practical
ing detection | experiments trade-offs between speed,
+ mitigation accuracy, and false alarms.
pipeline

[26] | Weighted  fed- | Distributed IoT | Enabled privacy-preserving
erated learning | gateways scalable defense without
IDS raw traffic sharing.

[27] | Federated aggre- | Multi-node SDN | Improved resilience under

node failures and unbal-
anced traffic distributions.

[28] | SDN-based Simulated home | Reduced congestion and im-
smart home | IoT environment | proved response time near
mitigation [oT gateways.
framework

[29] | Modern  SDN- | Asymmetric la- | Provides varied packet rates
DDoS bench- | beled synthetic | and flow structures for eval-
mark dataset | flows uating new IDS models.
(2024)

[30] | Graph  neural | Programmable |Early anomaly detection
network  based | data plane SDN | achieved through relational
detection framework modeling of flows.
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3 Implemented Framework

This section presents the implemented intrusion detection and mit-
igation framework designed for denial-of-service (DoS) and dis-
tributed denial-of-service (DDoS) protection in Cloud of Things
(CoT) environments. The proposed system integrates a hybrid
machine learning detection engine with a simulation-driven miti-
gation and recovery module. Unlike conventional approaches that
focus only on classification accuracy, the implemented framework is
structured as an end-to-end security pipeline that detects malicious
traffic, applies mitigation actions, and restores service continuity
under attack conditions [14], [21].

3.1 Overall Framework Architecture

The Cloud of Things architecture introduces multiple vulnerable
layers, including IoT devices, middleware gateways, and central-
ized cloud services. The implemented framework is deployed at the
middleware-cloud boundary, where traffic flows can be monitored
efficiently before reaching critical cloud resources. The main objec-
tive is to identify attack traffic early, reduce the burden on cloud
servers, and maintain stable throughput during attack episodes [22],
28].
Let the incoming traffic stream at time ¢ be represented as:

X (t) = {e1(t),2a(0), .., 2a(D)}, (1)

where each z;(t) denotes a network flow instance described through
extracted statistical and protocol-level features. The detection prob-
lem is formulated as a binary classification task where each flow
must be assigned either a benign or attack label:

y(t) € {0,1}, (2)

with y(¢) = 1 indicating malicious activity and y(¢) = 0 rep-
resenting legitimate traffic. Equations (1) and (2) define the fun-

331



International Journal of Applied Mathematics
Volume 38 No. 2 2025, 322-345
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

damental traffic representation and labeling structure used in the
implemented detection pipeline.

3.2 Hybrid Detection Model

The implemented detection module combines a Naive Bayes clas-
sifier with a Support Vector Machine (SVM) model. This hybrid
design is motivated by the complementary strengths of probabilistic
learning and margin-based separation. Naive Bayes provides fast
lightweight classification, while SVM offers robust discrimination
in high-dimensional traffic feature spaces [14], [24].

The Naive Bayes decision is computed through the posterior
probability:

P(y | X) o P(y)HP(xi | y), (3)

where conditional independence between features is assumed.
Although this assumption does not always hold for network traffic,
Naive Bayes remains effective due to its computational efficiency.

The SVM classifier constructs an optimal separating hyper-
plane:

F(X) = wPX +b, (4)

where w is the weight vector and b is the bias term. A flow is
classified as malicious when:

f(X) = 0. (5)

The hybrid decision rule integrates both classifiers such that an
attack is confirmed only when agreement is achieved:

1, f NB(X)=1 A SVM(X) =1,

0, otherwise.

(6)
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Equation (6) reduces false positives by requiring consistent evi-
dence from both probabilistic and margin-based detection, improv-
ing stability in dynamic CoT traffic patterns [19], [25].

3.3 Mitigation and Recovery Simulation Model

Detection alone is insufficient in operational CoT systems. There-
fore, the implemented framework extends classification into mitiga-
tion and recovery actions. Each detected attack is represented as
an episode with evolving system state. Let the attack episode state
at round r be:

Sr - {drammcr}v (7)

where d, denotes detection status, m, denotes mitigation level
applied, and ¢, represents cloud resource consumption.
The mitigation action is selected from a predefined action set:

A= {&1,@2,@3,@4}, (8)

where a; corresponds to traffic filtering, as to rate limiting, as
to gateway blocking, and a4 to cloud-level escalation. These mit-
igation strategies reflect practical SDN-CoT defense mechanisms
proposed in recent studies [21], [30].

Resource recovery is modeled through a restoration function:

R(r+1)=R(r) + v(C’max — C(T‘)), (9)

where C'(r) denotes current cloud load, C,,,, is maximum capac-
ity, and v is the recovery coefficient controlling stabilization speed.
Equation (9) ensures gradual service restoration after mitigation is
applied.

3.4 Performance Metrics

To evaluate effectiveness, t he framework computes d etection accu-
racy and system-level KPIs. Detection accuracy is defined as:

333



International Journal of Applied Mathematics
Volume 38 No. 2 2025, 322-345
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

TP+TN
TP+TN+FP+FN’
where TP, TN, FP, and F'N denote true positives, true nega-
tives, false positives, and false negatives.

Such KPIs are critical for validating mitigation beyond classifi-
cation metrics [28], [29].

Accuracy =

(10)

3.5 Proposed Framework Illustration

Figure 1 illustrates the complete implemented workflow from traffic
collection to mitigation and recovery.

[IOT Devices and Sensors]

|

[Middleware Gateway]

|

[Feature Extraction]

|

[Hybrid Detection (NB + SVM)]

|

[Mitigation Engine]

|

[Cloud Service Protection]

Figure 1: Proposed implemented framework for intrusion detection
and mitigation in Cloud of Things.
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3.6 Algorithmic Workflow

The operational procedure of the implemented framework is sum-
marized in Algorithm 1.

Algorithm 1 Hybrid IDS with Mitigation and Recovery in CoT

Input: Traffic stream X(¢) Extract features and construct
flow vectors each flow instance X Compute Naive Bayes deci-
sion using Eq. (3) Compute SVM decision using Eq. (5) Apply
hybrid rule using Eq. (6) D(X) = 1 Trigger mitigation action
from set A in Eq. (8) Update episode state S, using Eq. (7)
Apply recovery function Eq. (9) Output: Detection labels and
stabilized CoT service

The implemented framework achieves a unified balance between
detection accuracy, computational feasibility, and operational mit-
igation. By integrating Naive Bayes and SVM, the hybrid rule in
Eq. (6) reduces misclassification risk i n h ighly variable I oT traf-
fic. The mitigation-recovery model further extends intrusion detec-
tion into service continuity management, which is essential for CoT
systems supporting critical applications. The framework therefore
contributes a practical step toward adaptive, scalable, and resilient
intrusion defense in modern Cloud of Things environments [26],
[30].

4 Results and Discussion

This section presents the experimental evaluation of the proposed
intrusion detection and mitigation framework for Denial of Service
(DoS) protection in Cloud of Things (CoT) environments. The re-
sults are structured in two parts. First, Objective-2 outcomes are
reported, focusing on the supervised detection models trained on
the optimised feature space. Second, Objective-3 results are dis-
cussed, where the tuned ensemble detector is integrated into the
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real-time mitigation simulator to validate operational resilience un-
der heterogeneous attack scenarios.

4.1 Model-Level Detection Results

The detection framework was evaluated using three supervised learn-
ing models: Naive Bayes (NB), Support Vector Machine (SVM),
and a tuned Ensemble classifier. A Il m odels w ere t rained on the
fused feature representation produced after PSO-based feature se-
lection, where the optimised subset size was fixed at 50 discrimi-
native features. Performance was assessed independently on vali-
dation and test splits, ensuring that the test set remained isolated
until final t hreshold t uning was completed.

Figure 2 illustrates the confusion matrix obtained from the tuned
ensemble classifier o n t he v alidation s plit. T he m odel correctly
classifies 9,865 b enign fl ows an d de tects 10,026 Do S at tack flows.
Misclassification remains limited, with only 207 false p ositives and
45 false negatives, confirming that t he ensemble achieves very high
attack sensitivity while maintaining controlled false alarm behavior.
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Ensemble — Confusion Matrix (val_tuned)

Benign

True

DoS

Benign DoS
Predicted

Figure 2: Confusion matrix of the tuned ensemble classifier on the
validation split.

To provide a complete quantitative comparison across all mod-
els, Table 3 summarises the recorded accuracy, precision, recall, and
F1-scores reported in Table 4.2 of the experimental results chapter.
These metrics demonstrate consistent superiority of the ensemble
classifier over NB and SVM across both evaluation splits.

Table 3: Summary of Model Performance Metrics (Objective-2).

Model Split | Accuracy | Precision| Recall / F1

NB Validation | 0.9814 0.9929 |0.9697 / 0.9812
SVM Validation |  0.9867 0.9879 | 0.9854 / 0.9867
Ensemble | Validation | 0.9875 0.9798 |0.9955 / 0.9876

NB Test 0.9821 0.9934 |0.9705 / 0.9819
SVM Test 0.9864 0.9868 |0.9860 / 0.9863
Ensemble Test 0.9872 0.9785 [0.9963 / 0.9873
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The results in Table 3 confirm t hat w hile N B p rovides strong
precision, its recall remains consistently lower, indicating difficulty
in capturing all DoS instances. SVM improves balance and sta-
bility, achieving precision near 0.987 and recall near 0.985 across
both splits. However, the tuned ensemble achieves the highest re-
call, reaching 0.9955 on validation and 0.9963 on test data. This
exceptionally high recall is critical in CoT deployments, where even
a small number of missed attack flows can trigger cascading service
disruption.

A closer examination of error distributions further reinforces
this interpretation. NB misclassifies 305 attack flows in validation
and 742 in testing, reflecting i ts s ensitivity t o c omplex t raffic de-
pendencies. SVM reduces these false negatives substantially, but
still records 147 and 353 missed attacks. In contrast, the ensemble
reduces false negatives to only 45 in validation and 94 in testing,
representing a reduction of nearly 70-85% relative to individual
learners.

4.2 Mitigation and Recovery Evaluation

Building upon the ensemble detector, Objective-3 evaluates the
end-to-end mitigation framework through a discrete-time CoT sim-
ulation spanning 120 rounds. The simulator injects multiple attack
categories, including DDoS, reconnaissance, malware, port scan-
ning, and exfiltration, in addition t o b enign t raffic. Det ection de-
cisions trigger mitigation actions at the edge and, when required,
escalation to cloud-level scrubbing.

4.2.1 Mitigation Action Effectiveness

Once an attack episode is detected, the mitigation engine selects an
appropriate primary response. Table 4 summarises the distribution
of mitigation actions applied across all simulated attack episodes.
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Table 4: Distribution of Primary Mitigation Actions (Objective-3).

Mitigation Action Count | Percentage (%)
RATE LIMIT 18 46.15
QUARANTINE FLOW 11 28.21
ACL BLOCK 6 15.38
ISOLATE DEVICE 4 10.26

Rate limiting dominates initial responses, reflecting the preva-
lence of volumetric DDoS bursts. Quarantine actions are primarily
applied to exfiltration flows, while ACL blocking is invoked for per-
sistent scanning. Device isolation remains rare, reserved only for
malware cases requiring deeper remediation.

4.2.2 System-Level KPI Results

To synthesise detection robustness and mitigation stability, the
simulator produces a consolidated KPI table derived directly from

kpis.csv. Table 5 reports the key performance indicators of Objective—
3.

Table 5: Key Performance Indicators from Objective-3 Simulation.

KPI Value
Total episodes 40
Detected episodes 32
Detection coverage 97.5%
Recovered episodes 31
Recovery coverage 80%

Mean detection latency 3.69 rounds
Mean recovery time 4.06 rounds
Average throughput 1074.53 samples/s
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The KPI results confirm strong real-time robustness. Detection
coverage of 97.5% demonstrates that the ensemble classifier remains
reliable even under fluctuating device states, noisy link conditions,
and heterogeneous adversarial behaviors. Recovery coverage of 80%
further indicates that most detected attacks were successfully mit-
igated and stabilised. Mean detection latency below four rounds
ensures that mitigation triggers occur early enough to prevent un-
controlled cloud saturation.

4.2.3 Throughput and Resource Stability

Network-level resource analysis shows that throughput oscillates
between approximately 600 and 2000 samples per second depend-
ing on attack intensity and enforcement decisions. Notable troughs
correspond to severe DDoS bursts and cloud bottlenecks during
multi-vector episodes. However, throughput rebounds sharply after
mitigation stabilisation, demonstrating elasticity and service conti-
nuity.

Edge CPU utilisation ranges from 0.4 to 0.95, while cloud CPU
remains below 0.3 except during cloud scrubbing escalation. This
validates the hierarchical design, where edge nodes handle lightweight
filtering and cloud resources are engaged only when volumetric
surges exceed local enforcement capacity. Link utilisation remains
bounded around 0.08-0.12, confirming resistance against congestion
collapse.

4.3 Overall Discussion

The results validate the proposed hybrid CoT defense architecture.
At the detection level, the tuned ensemble model achieves accuracy
above 98.7% with near-perfect recall, ensuring that attack flows
are rarely overlooked. At the system level, mitigation actions ef-
fectively contain attacks while maintaining stable throughput and
bounded resource expenditure. Recovery intervals remain short,
averaging just above four rounds, demonstrating rapid restoration
after enforcement.
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Overall, the findings confirm that combining optimised machine
learning detection with hierarchical mitigation and cloud-assisted
escalation provides an effective, scalable, and deployable intrusion
defense framework for Cloud of Things environments.

5 Conclusion

This paper developed and validated a hybrid intrusion detection
and mitigation framework for defending Cloud of Things environ-
ments against Denial-of-Service attacks. By combining optimised
feature selection with supervised learning models, the proposed
system achieves high detection reliability, with the tuned ensem-
ble classifier providing the strongest balance between precision and
near-perfect recall. The results confirm that ensemble-based de-
cisions substantially reduce missed attack flows, which is critical
for maintaining service availability in cloud-supported IoT infras-
tructures. Beyond detection, the integration of the classifier into
a mitigation and recovery simulator demonstrates that effective re-
sponse policies such as rate limiting, quarantine enforcement, ACL
blocking, and cloud escalation can stabilise system performance
under sustained attack conditions. Key performance indicators
further verify that the framework maintains acceptable through-
put, bounded resource utilisation, and rapid service recovery across
diverse attack episodes. Overall, the findings establish that cou-
pling accurate machine learning detection with structured mitiga-
tion workflows offers a practical and scalable security approach for
modern CoT deployments, providing both strong attack resilience
and improved operational continuity.
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