DOI: 10.12732/ijam.v38i2.10
MATHEMATICAL MODEL OF
DEGRADING SOLUTE TRANSPORT
IN A TWO-ZONE POROUS MEDIUM
Otabek Sagdullaev 1,§, Mohd Rijal Ilias 2
1 Kattakurgan Branch of Samarkand State University
Kattakurgan, UZBEKISTAN
2 College of Computing, Informatics and Mathematics
Universiti Teknologi MARA
40450 Shah Alam, Selangor, MALAYSIA
Abstract. In the paper a mathematical model of the degrading solute transport in a porous medium, consisting of active and passive zones, taking into account the multistage adsorption kinetics is compiled. Based on this model, the solute transport problem was formulated and numerically
solved using finite difference method. The effect of changes in the kinetics of adsorption on transport characteristics was analyzed. It is shown that in profiles of concentration two zones are formed: one is before “charging“ and the other is after. In these zones, transport and adsorption characteristics have different rates of change.
How
to cite this paper?
DOI: 10.12732/ijam.v38i2.10
Source: International Journal of
Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 2
References
[1] D. B.
Ingham, I. Pop, Transport Phenomena in Porous Media II, Pergamon (2002).
[2] D. E. Armstrong, G. Chesters, Adsorption catalyzed chemical hydrolysis of atrazine, Environ. Sci. Technol., 2, No 9 (1968), 683-689; doi:10.1021/es60021a006.
[3] S. L. Daniels, Mechanisms involved in the sorption of microorganisms to solid surfaces, In: Adsorption of Microorganisms to Surfaces, John Wiley and Sons Inc., New York (1980), 7-58.
[4] A. V. Ogram, R. E. Jessup, L. T. Ou, P. S. Rao, Effects of sorption on biological degradation rates of (2,4dichlorophenoxy) acetic acid in soils, Appl. Environ. Microbiol., 49, No 3 (1985), 582-587; doi:10.1128/aem.49.3.582-587.1985.
[5] M. Th. van Genuchten, R. J. Wagenet, Two - site/Two - region models for pesticide transport and degradation: Theoretical development and analytical solutions, Soil Sci. Soc. Am. J., 53 (1989), 1303-1310.
[6] V. Gitis, I. Rubinstein, M. Livshits, M. Ziskind, Deep - bed filtration model with multistage adsorption kinetics, Chemical Engineering Journal, 163 (2010), 78-85.
[7] B. Khuzhayorov, J. Makhmudov, B. Fayziev, T. Begmatov, O. Sagdullaev, Model of two-component suspension filtration in a porous medium with multistage deposition kinetics, AIP Conf. Proc., 2637, 04001, (2022); doi 10.1063/5.0118455.
[8] B. K. Khuzhayorov, J. M. Makhmudov, B. M. Fayziev, T.I. Begmatov, Some model of a suspension filtration in a porous media that accounts for the two-zone and multistage character of deposition kinetics, J.l of Applied and Industrial Mathematics, 14, No 3 (2020), 513-523.
[9] B. Fayziev, G. Ibragimov, B. Khuzhayorov, I. A. Alias, Numerical study of suspension filtration model in porous medium with modified adsorption kinetics, Symmetry, 12, No 5 (2020), Art. 696.
[10] B. Fayziev, S. Tursunova, T. Begmatov, R. Safarov, Numerical study of the hybrid model of solute transport in porous media, AIP Conf. Proc. 3244, Art. 020075 (2024); doi:10.1063/5.0241447.
[11] B. Fayziev, J. Mustofoqulov, T. Begmatov, The suspension filtration model in a dual-zone porous medium taking into account the “Charging” effect, AIP Conf. Proc. 3045, 050005 (2024); doi:10.1063/5.0197287.
[12] B. Khuzhayorov, A. Usmonov, N.M.A. Nik Long, B. Fayziev, Anomalous solute transport in a cylindrical two-zone medium with fractal structure, Applied Sciences, 10, No 15 (2020), Art. 5349; doi:10.3390/app10155349.
[13] J. M. Makhmudov, A. I. Usmonov, Z. D. Kaytarov, B. Sultonov, Numerical solution of the problem of anomalous solute transport in a two-dimensional nonhomogeneous porous medium, AIP Conf. Proc., 2637 (2022), Art. 040017; doi:10.1063/5.0118488.
[14] ] B. Kh. Khuzhayorov, T. O. Djiyanov, T.R. Yuldashev, J. of Engineering Physics and Thermophysics, 92, No 1 (2019), 104-113; doi:10.1007/s10891-019-01912.
[15] B. Khuzhayorov, T. Begmatov, E. Ch. Kholiyarov, B. Fayziev, The inverse problem of determining the kinetic coefficients in the model of suspension filtration in a porous medium, Eurasian J. of Mathematical and Computer Applications, 10, No 4 (2022), 96-106; doi:10.32523/2306-6172-2022-10-4-96-106.
[16] B. Fayziev, A phenomenological model of suspension filtration in porous medium, International Journal of Applied Mathematics, 33, No 3 (2020), 511-521; doi:10.12732/ijam.v33i3.10.
[17] A. A. Samarskii, The Theory of Difference Schemes, CRC Press, New York (2001).
IJAM
o Home
o Contents