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Abstract

In this paper, we introduce an extension of the double Sumudu transform on

time scales. The fundamental properties of the double Sumudu transform are es-

tablished, including its existence, shifting property, transform of the derivative, and

convolution theorem.The double Sumudu transform is demonstrated to be an effec-

tive and efficient technique for solving partial and partial-integro dynamic equations

on time scales.
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1 Introduction

Time scale calculus is a relatively new theory that unites two approaches of dynamic mod-

eling difference equation and differential equation. S. Hilger introduced this theory in his

Ph. D thesis. Time scale is any non-empty closed subset of real numbers. The double

Sumudu transform helps to solve partial dynamic equations and integro-dynamic equa-

tions. Motivating by this theory, integral transforms such as Laplace, Fourier, Sumudu,

and Shehu transforms have been generalized on time scales [2–9, 11, 12, 17]. Hassan A.

Agwa [1] introduced the Sumudu transform on time scales for the rd-continuous function

f : T0 → R defined as,

S {f} (u) = 1
u

∫∞
t0

f (t) eσ⊖ 1
u

(t, t0) ∆t.

for u ∈ D {f}, where D {f} consists of all complex numbers u ∈ R for which the improper

integral exists.

M. J. Tchueche and N. S. Mbare [18] introduced the double Sumudu transform of the

function φ(t, x) given by

S2 [φ (t, x) ; (u, v)] = 1
uv

∫∞
0

∫∞
0

e−(
t
u
+x

v )φ (t, x) dt dx

where t, x ∈ R+. This transform extends the classical Sumudu transform to two dimen-

sions and is particularly useful in solving certain partial differential equations. In this
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paper, we have generalized the double Sumudu transform on time scales, which is helpful

for solving partial and integral dynamic equations.

2 Preliminaries

In this section, all the results and basic terminologies follow from [1–5, 13–18]. Any

non-empty closed subset of R is called a time scale. Forward jump Operator σ : T → T

defined as σ (t) = inf {s ∈ T : s > t} and backward jump operator ρ : T → T defined as

ρ (t) = sup {s ∈ T : s < t} . If σ (t) > t, it is called right scattered. If ρ (t) < t, then t

is called left scattered. If t < supT and σ (t) = t, then t is called right dense point. If

t > inf T and ρ (t) = t, the t is called the left dense point. Points that are right-scattered

and left-scattered at the same time are called isolated. It means that ρ (t) < t < σ (t).

The function µ : T → [0,∞) is defined by µ (t) = σ (t)− t is called graininess function.

Definition 2.1. If a function φ : T → R is continuous at a right-dense point in T and has

a left-sided limit at left-dense points in T, then the function is known as rd-continuous.

Definition 2.2. A function φ : T → R is called regressive provided, 1 + µ (t)φ (t) ̸= 0

for all t ∈ T. We denote the set of all regressive functions by R. Further, for h > 0, the

set of Hilger complex numbers is, Ch :=
{
z ∈ C : z ̸= −1

h

}
and for z ∈ C the Hilger real

part of z is Reh (z) :=
|zh+1|−1

h
.

Definition 2.3 (Regulated Function). A function φ : T → R is said to be regulated if
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its right-sided limits exist(finite) at all right-dense points in T and its left-sided limits

exist(finite) at all left-dense points in T.

Theorem 2.4. If a, b, c ∈ T, β ∈ R and f, g ∈ Crd,then

i)
∫ b

a
[f (t) + g (t)]∆t =

∫ b

a
f (t)∆t+

∫ b

a
g (t)∆t;

ii)
∫ b

a
(βf (t))∆t = β

∫ b

a
f (t)∆t;

iii)
∫ b

a
f (t)∆t = −

∫ a

b
f (t)∆t;

iv)
∫ b

a
f (t)∆t =

∫ c

a
f (t)∆t+

∫ b

c
f (t)∆t;

v)
∫ b

a
f (σ (t)) g∆ (t)∆t = (fg) (b)− (fg) (a)−

∫ b

a
f∆ (t) g (t) ∆t;

vi)
∫ b

a
f (t) g∆ (t)∆t = (fg) (b)− (fg) (a)−

∫ b

a
f∆ (t) g (σ (t)) ∆t;

vii)
∫ a

a
f (t)∆t = 0;

viii) if |f (t)| ≤ g (t)on [a, b),then∣∣∣∫ b

a
f (t)∆t

∣∣∣ ≤ ∫ b

a
g (t)∆t;

ix) if f (t) ≥ 0 for all a ≤ t < b,then
∫ b

a
f (t) ∆t ≥ 0.

Theorem 2.5. [2, 4] If λ1, λ2 : T → R are regressive and rd-continuous, then the following

properties hold:

1) λ1 ⊕ λ2 = λ1 + λ2 + µ λ1λ2,

2) λ1 ⊖ λ2 = λ1 ⊕ (⊖λ2) =
λ1−λ2

1+µλ2
,
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3) ⊖λ1 =
−λ1

1+µλ1
,

4) eλ1 (σ (t) , t0) = eλ1 (t, t0) (1 + µ (t)λ1 (t)),

5) e⊖λ1 (t, t0) =
1

eλ1 (t,t0)
,

6) eλ1 (t, t0) .eλ2 (t, t0) = eλ1⊕λ2 (t, t0),

7) fraceλ1 (t, t0)eλ2 (t, t0) = eλ1⊖λ2 (t, t0),

8) eσ⊖λ1
(t, t0) =

e⊖λ1(t,t0)

1+µλ1
.

In this article, we use the following notations

eλ1⊕λ2

(
t1, t2, t0, t

′
0

)
= eλ1 (t1, t0) eλ2

(
t2, t

′
0

)
and e⊖λ1⊖λ2

(
t1, t2, t0, t

′
0

)
= e⊖λ1 (t1, t0) e⊖λ2

(
t2, t

′
0

)
.

Definition 2.6. The function φ (t1, t2) : T1 × T2 → C is said to be of exponential

type I, if there exist constants M, d1, d2 > 0 such that |φ (t1, t2)| ≤ Med1t1+d2t2 and

φ is said to be of exponential type II if there exist constants M, d1, d2 > 0 such that

|φ (t1, t2)| ≤ Med1⊕d2

(
t1, t2, t0, t

′
0

)
.

3 Double Sumudu Transform on Time Scales

In this section, we extend the double Sumudu transform for time scales and present some

essential properties of the double Sumudu transform.

Definition 3.1. Suppose that T1 and T2 are time scales such that sup {T1,T2} = ∞ and

t0 ∈ T1, t
′
0 ∈ T2 are fixed. Let φ : T1 × T2 → C be rd-continuous functions. Then the
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generalized double Sumudu transform of φ (t1, t2) is

Φ (λ1, λ2) = S1S2 [φ (t1, t2)] =
1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2) ∆t1 ∆t2

Provided the integral exists with 1 + µ1
1
λ1

̸= 0 and 1 + µ2
1
λ2

̸= 0 for all (t1, t2) ∈ T1 ×T2.

Theorem 3.2 (Existence Theorem). If φ (t1, t2) is rd-continuous function on T1

⋂
[t0, ξ1]×

T2

⋂[
t
′
0, ξ2

]
and |φ (t1, t2)| ≤ Med1⊕d2

(
t1, t2, t0, t

′
0

)
, then the double Sumudu transform of

φ (t1, t2) exists for all positively regressive ⊖ 1
λ1

and ⊖ 1
λ2

provided, lim
t1→∞

ed1⊖ 1
λ1

(t1, t0) → 0

and lim
t2→∞

ed2⊖ 1
λ2

(
t2, t

′
0

)
→ 0.

Proof. We have, |S1S2 [φ (t1, t2)]|

=

∣∣∣∣ 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2) ∆t1 ∆t2

∣∣∣∣
≤ 1

λ1λ2

∫∞
t0

∫∞
t
′
0

∣∣∣∣eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2) ∆t1 ∆t2

∣∣∣∣
≤ 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
|φ (t1, t2)|∆t1∆t2

≤ 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
Med1⊕d2

(
t1, t2, t0, t

′
0

)
∆t1∆t2

= M
λ1λ2

∫∞
t0

∫∞
t
′
0

e⊖ 1
λ1

⊖ 1
λ2

(
t1,t2,t0,t

′
0

)
(
1+µ1(t)

1
λ1

)(
1+µ2(t)

1
λ2

)ed1⊕d2

(
t1, t2, t0, t

′
0

)
∆t1∆t2

= M
λ1

∫∞
t0

e
d1⊖

1
λ1

(t1,t0)(
1+µ1(t)

1
λ1

)
[∫∞

t
′
0

e
d2⊖

1
λ2

(
t2,t

′
0

)
λ2

(
1+µ2(t)

1
λ2

)∆t2

]
∆t1

= M

λ1

(
d1− 1

λ1

) ∫∞
t0

(
d1− 1

λ1

)
e
d1⊖

1
λ1

(t1,t0)(
1+µ1(t)

1
λ1

)
[

1

λ2

(
d2− 1

λ2

) ∫∞
t
′
0

λ2

(
d2− 1

λ2

)
e
d2⊖

1
λ2

(
t2,t

′
0

)
(
1+µ2(t)

1
λ2

) ∆t2

]
∆t1

= M

λ1

(
d1− 1

λ1

) ∫∞
t0

(
d1 ⊖ 1

λ1

)
ed1⊖ 1

λ1

(t1, t0)

[
1

λ2

(
d2− 1

λ2

) ∫∞
t
′
0

(
d2 ⊖ 1

λ2

)
ed2⊖ 1

λ2

(
t2, t

′
0

)
∆t2

]
∆t1

= M

λ1

(
d1− 1

λ1

) ∫∞
t0

e∆1

d1⊖ 1
λ1

(t1, t0)

[
1

λ2

(
d2− 1

λ2

) ∫∞
t
′
0
e∆2

d2⊖ 1
λ2

(
t2, t

′
0

)
∆t2

]
∆t1

= M

λ1

(
d1− 1

λ1

) ∫∞
t0

e∆1

d1⊖ 1
λ1

(t1, t0)

[
1

λ2

(
d2− 1

λ2

) ∫∞
t
′
0
e∆2

d2⊖ 1
λ2

(
t2, t

′
0

)
∆t2

]
∆t1
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= M

λ1λ2

(
1
λ1

−d1
)(

1
λ2

−d2
)

= M
(1−d1λ1)(1−d2λ2)

3.1 Double Sumudu transform of some elementary functions

To find the double Sumudu transform of some elementary functions, we apply the Defi-

nition 3.1.

1) S1S2 [1] = 1

Proof. S1S2 [1]

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

=

[
1
λ1

∫∞
t0

e⊖ 1
λ1

(t1,t0)(
1+µ1

1
λ1

) ∆t1

][
1
λ2

∫∞
t
′
0

e⊖ 1
λ2

(
t2,t

′
0

)
(
1+µ2

1
λ2

) ∆t2

]

=

[
1

λ1

(
−1
λ1

) ∫∞
t0

(
−1
λ1

)
e⊖ 1

λ1

(t1,t0)(
1+µ1

1
λ1

) ∆t1

][
1

λ2

(
−1
λ2

) ∫∞
t
′
0

(
−1
λ2

)
e⊖ 1

λ2

(
t2,t

′
0

)
(
1+µ2

1
λ2

) ∆t2

]
=

[
−
∫∞
t0

(
⊖ 1

λ1

)
e⊖ 1

λ1

(t1, t0)∆t1

] [
−
∫∞
t
′
0

(
⊖ 1

λ2

)
e⊖ 1

λ2

(
t2, t

′
0

)
∆t2

]
=

[
−
∫∞
t0

e∆1

⊖ 1
λ1

(t1, t0)∆t1

] [
−
∫∞
t
′
0
e∆2

⊖ 1
λ2

(
t2, t

′
0

)
∆t2

]

= 1

Provided lim
t1→∞

e⊖ 1
λ1

(t1, t0) → 0 and lim
t2→∞

e⊖ 1
λ2

(
t2, t

′
0

)
→ 0.

2) S1S2

[
eγ⊕τ

(
t1, t2, t0, t

′
0

)]
= 1

(1−γλ1)(1−τλ2)

Proof. S1S2

[
eγ⊕τ

(
t1, t2, t0, t

′
0

)]
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= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
eγ⊕τ

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0

e⊖ 1
λ1

⊖ 1
λ2

(
t1,t2,t0,t

′
0

)
(
1+µ1

1
λ1

)(
1+µ2

1
λ2

) eγ⊕τ

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0

e
γ⊖ 1

λ1

(t1,t0)eτ⊖ 1
λ2

(t1,t0)(
1+µ1

1
λ1

)(
1+µ2

1
λ2

) ∆t1 ∆t2

=

[
1
λ1

∫∞
t0

e
γ⊖ 1

λ1

(t1,t0)(
1+µ1

1
λ1

) ∆t1

] [
1
λ2

∫∞
t
′
0

e
τ⊖ 1

λ2

(t1,t0)(
1+µ2

1
λ2

) ∆t2

]
=

[
1

λ1

(
γ− 1

λ1

) ∫∞
t0

(
γ− 1

λ1

)
e
γ⊖ 1

λ1

(t1,t0)(
1+µ1

1
λ1

) ∆t1

][
1

λ2

(
τ− 1

λ2

) ∫∞
t
′
0

(
τ− 1

λ2

)
e
τ⊖ 1

λ2

(t1,t0)(
1+µ2

1
λ2

) ∆t2

]
=

[
1

λ1

(
γ− 1

λ1

) ∫∞
t0

(
γ ⊖ 1

λ1

)
eγ⊖ 1

λ1

(t1, t0)∆t1

] [
1

λ2

(
τ− 1

λ2

) ∫∞
t
′
0

(
τ ⊖ 1

λ2

)
eτ⊖ 1

λ2

(t1, t0) ∆t2

]
=

[
1

λ1

(
γ− 1

λ1

) ∫∞
t0

e∆1

γ⊖ 1
λ1

(t1, t0)∆t1

] [
1

λ2

(
τ− 1

λ2

) ∫∞
t
′
0
e∆2

τ⊖ 1
λ2

(t1, t0) ∆t2

]
=

[
1

λ1

(
1
λ1

−γ
)
] [

1

λ2

(
1
λ2

−τ
)
]

= 1
(1−γλ1)(1−τλ2)

Provided lim
t1→∞

eγ⊖ 1
λ1

(t1, t0) → 0 and lim
t2→∞

eτ⊖ 1
λ2

(
t2, t

′
0

)
→ 0.

3) S1S2

[
sinγ⊕τ

(
t1, t2, t0, t

′
0

)]
= τλ2+γλ1

[1+γ2λ2
1][1+τ2λ2

2]

Proof. S1S2

[
sinγ⊕τ

(
t1, t2, t0, t

′
0

)]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
sinγ⊕τ

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

) [ ei(γ⊕τ)

(
t1,t2,t0,t

′
0

)
−e⊖i(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2i

]
∆t1 ∆t2

= S1S2

[
ei(γ⊕τ)

(
t1,t2,t0,t

′
0

)
−e⊖i(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2i

]
= 1

2i

[
1

(1−iγλ1)(1−iτλ2)
− 1

(1+iγλ1)(1+iτλ2)

]
= τλ2+γλ1

[1+γ2λ2
1][1+τ2λ2

2]

4) S1S2

[
cosγ⊕τ

(
t1, t2, t0, t

′
0

)]
= 1−γτλ1λ2

[1+γ2λ2
1][1+τ2λ2

2]
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Proof. S1S2

[
cosγ⊕τ

(
t1, t2, t0, t

′
0

)]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
cosγ⊕τ

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

) [ ei(γ⊕τ)

(
t1,t2,t0,t

′
0

)
+e⊖i(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2

]
∆t1 ∆t2

= S1S2

[
ei(γ⊕τ)

(
t1,t2,t0,t

′
0

)
+e⊖i(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2

]
= 1

2

[
1

(1−iγλ1)(1−iτλ2)
+ 1

(1+iγλ1)(1+iτλ2)

]
= 1−γτλ1λ2

[1+γ2λ2
1][1+τ2λ2

2]

5) S1S2

[
sinhγ⊕τ

(
t1, t2, t0, t

′
0

)]
= τλ2+γλ1

[1−γ2λ2
1][1−τ2λ2

2]

Proof. S1S2

[
sinhγ⊕τ

(
t1, t2, t0, t

′
0

)]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
sinhγ⊕τ

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

) [ e(γ⊕τ)

(
t1,t2,t0,t

′
0

)
−e⊖(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2

]
∆t1 ∆t2

= S1S2

[
e(γ⊕τ)

(
t1,t2,t0,t

′
0

)
−e⊖(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2

]
= 1

2

[
1

(1−γλ1)(1−τλ2)
− 1

(1+γλ1)(1+τλ2)

]
= τλ2+γλ1

[1−γ2λ2
1][1−τ2λ2

2]

6) S1S2

[
coshγ⊕τ

(
t1, t2, t0, t

′
0

)]
== 1+γτλ1λ2

[1−γ2λ2
1][1−τ2λ2

2]

Proof. S1S2

[
coshγ⊕τ

(
t1, t2, t0, t

′
0

)]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
coshγ⊕τ

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

) [ e(γ⊕τ)

(
t1,t2,t0,t

′
0

)
+e⊖(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2

]
∆t1 ∆t2

= S1S2

[
e(γ⊕τ)

(
t1,t2,t0,t

′
0

)
+e⊖(γ⊕τ)

(
t1,t2,t0,t

′
0

)
2

]

Received: August 03, 2025 168



International Journal of Applied Mathematics
Volume 38 No. 1 2025
ISSN: 1311-1728 (printed); ISSN: 1314-8060 (online)

= 1
2

[
1

(1−γλ1)(1−τλ2)
+ 1

(1+γλ1)(1+τλ2)

]
= 1+γτλ1λ2

[1−γ2λ2
1][1−τ2λ2

2]

4 Main Results

Theorem 4.1 (Linearity Property). If φ1 (t1, t2) and φ2 (t1, t2) are functions with the

double Sumudu transform S1S2 [φ1 (t1, t2)] and S1S2 [φ2 (t1, t2)] respectively. Then

S1S2 [b1φ1 (t1, t2) + b2φ2 (t1, t2)] = b1S1S2 [φ1 (t1, t2)] + b2S1S2 [φ2 (t1, t2)].

Proof. The proof follows from the definition 3.1 of the double Sumudu transform.

Theorem 4.2 (Shifting Theorem). For η1 ∈ T1 and η2 ∈ T2 with η1, η2 > 0, we have

Gη1,η2 (t1, t2) =


0 : t1 ∈ T1, t2 ∈ T2 & t1 < η1, t2 < η2

1 : t1 ∈ T1, t2 ∈ T2 & t1 ≥ η1, t2 ≥ η2.

Then S1S2 [Gη1,η2 (t1, t2)φ (t1, t2)] = e⊖ 1
λ1

⊖ 1
λ2

(
η1, η2, t0, t

′
0

)
S1S2 [φ (t1, t2)]

Proof. On applying the definition of the double Sumudu transform S1S2 [Gη1,η2 (t1, t2)φ (t1, t2)]

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
[Gη1,η2 (t1, t2)φ (t1, t2)]∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0

e⊖ 1
λ1

⊖ 1
λ2

(
t1,t2,t0,t

′
0

)
(
1+µ1

1
λ1

)(
1+µ2

1
λ2

) [Gη1,η2 (t1, t2)φ (t1, t2)]∆t1 ∆t2

= 1
λ1λ2

∫∞
η1

∫∞
η2

e⊖ 1
λ1

⊖ 1
λ2

(
η1,η2,t0,t

′
0

)
e⊖ 1

λ1
⊖ 1

λ2

(t1,t2,η1,η2)(
1+µ1

1
λ1

)(
1+µ2

1
λ2

) φ (t1, t2)∆t1 ∆t2

=
e⊖ 1

λ1
⊖ 1

λ2

(
η1,η2,t0,t

′
0

)
λ1λ2

∫∞
η1

∫∞
η2

e⊖ 1
λ1

⊖ 1
λ2

(t1,t2,η1,η2)(
1+µ1

1
λ1

)(
1+µ2

1
λ2

)φ (t1, t2)∆t1 ∆t2

= e⊖ 1
λ1

⊖ 1
λ2

(
η1, η2, t0, t

′
0

)
S1S2 [φ (t1, t2)]
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Theorem 4.3 (Derivative property of the double Sumudu transform). Let φ (t1, t2) :

T1 × T2 → C be rd-continuous function such that

φ∆1 (t1, t2) =
∂φ(t1,t2)
∆1t1

, φ∆2
1 (t1, t2) =

∂2φ(t1,t2)

∆1t21
,

φ∆2 (t1, t2) =
∂φ(t1,t2)
∆2t2

, φ∆2
2 (t1, t2) =

∂2φ(t1,t2)

∆2t22
,

are also rd-continuous, then

1) S1S2

[
φ∆1 (t1, t2)

]
= 1

λ1
{S1S2 [φ (t1, t2)]− S2 [φ (t0, t2)]},

2) S1S2

[
φ∆2 (t1, t2)

]
= 1

λ2

{
S1S2 [φ (t1, t2)]− S1

[
φ
(
t1, t

′
0

)]}
,

3) S1S2

[
φ∆2

1 (t1, t2)
]
= 1

λ2
1
S1S2 [φ (t1, t2)]− 1

λ2
1
S2 [φ (t0, t2)]− 1

λ1
S2

[
φ∆1 (t0, t2)

]
,

4) S1S2

[
φ∆2

2 (t1, t2)
]
= 1

λ2
2
S1S2 [φ (t1, t2)]− 1

λ2
2
S1

[
φ
(
t1, t

′
0

)]
− 1

λ2
S1

[
φ∆2

(
t1, t

′
0

)]
Provided lim

t1→∞
e⊖ 1

λ1

(t1, t0) → 0 and lim
t2→∞

e⊖ 1
λ2

(
t2, t

′
0

)
→ 0.

Proof.

1) S1S2

[
φ∆1 (t1, t2)

]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ∆1 (t1, t2)∆t1 ∆t2

= 1
λ1λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

) [∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)φ
∆1 (t1, t2)∆t1

]
∆t2

= 1
λ1λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

) [∫∞
t0

[(
e⊖ 1

λ1

(t1, t0)φ (t1, t2)
)∆1

−
(
e∆1

⊖ 1
λ1

(t1, t0)φ (t1, t2)

)]
∆t1

]
∆t2

= 1
λ1λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

) [
−φ (t0, t2)−

∫∞
t0

(
⊖ 1

λ1

)
e⊖ 1

λ1

(t1, t0)φ (t1, t2)∆t1

]
∆t2

= 1
λ1λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

) [
−φ (t0, t2) +

1
λ1

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)φ (t1, t2)∆t1

]
∆t2

= 1
λ1

[
−1
λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

)
φ (t0, t2)∆t2

]
+ 1

λ1

[
1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2)∆t1∆t2

]
= −1

λ1
S2 [φ (t0, t2)] +

1
λ1
S1S2 [φ (t1, t2)]
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= 1
λ1

{S1S2 [φ (t1, t2)]− S2 [φ (t0, t2)]}

2) S1S2

[
φ∆2 (t1, t2)

]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ∆2 (t1, t2)∆t1 ∆t2

= 1
λ1λ1

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)

[∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

)
φ∆2 (t1, t2)∆t2

]
∆t1

= 1
λ1λ2

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)

[∫∞
t
′
0

[(
e⊖ 1

λ2

(
t2, t

′
0

)
φ (t1, t2)

)∆2

−
(
e∆2

⊖ 1
λ2

(
t2, t

′
0

)
φ (t1, t2)

)]
∆t2

]
∆t1

= 1
λ1λ2

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)
[
−φ

(
t1, t

′
0

)
−

∫∞
t
′
0

(
⊖ 1

λ2

)
e⊖ 1

λ2

(
t2, t

′
0

)
φ (t1, t2)∆t2

]
∆t1

= 1
λ1λ2

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)

[
−φ

(
t1, t

′
0

)
+ 1

λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

)
φ (t1, t2)∆t2

]
∆t1

= 1
λ2

[
−1
λ1

∫∞
t
′
0
eσ1

⊖ 1
λ1

(t1, t0)φ
(
t1, t

′
0

)
∆t1

]
+ 1

λ2

[
1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2)∆t1∆t2

]
= −1

λ2
S1

[
φ
(
t1, t

′
0

)]
+ 1

λ2
S1S2 [φ (t1, t2)]

= 1
λ2

{
S1S2 [φ (t1, t2)]− S1

[
φ
(
t1, t

′
0

)]}

3) S1S2

[
φ∆2

1 (t1, t2)
]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ∆2

1 (t1, t2)∆t1 ∆t2

= 1
λ1λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

) [∫∞
t0

[(
e⊖ 1

λ1

(t1, t0)φ
∆1 (t1, t2)

)∆1

−
(
e∆1

⊖ 1
λ1

(t1, t0)φ
∆1 (t1, t2)

)]
∆t1

]
∆t2

= 1
λ1λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

) [
−φ∆1 (t0, t2) +

1
λ1

∫∞
t0

(
eσ1

⊖ 1
λ1

(t1, t0)φ
∆1 (t1, t2)

)
∆t1

]
∆t2

= −1
λ1

[
1
λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

)
φ∆1 (t0, t2)∆t2

]
+ −1

λ2
1

[
1
λ2

∫∞
t
′
0
eσ2

⊖ 1
λ2

(
t2, t

′
0

)
φ (t0, t2)∆t2

]

+ 1
λ2
1

[
1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2)∆t1 ∆t2

]
= − 1

λ1
S2

[
φ∆1 (t0, t2)

]
− 1

λ2
1
S2 [φ (t0, t2)] +

1
λ2
1
S1S2 [φ (t1, t2)]

= 1
λ2
1
S1S2 [φ (t1, t2)]− 1

λ2
1
S2 [φ (t0, t2)]− 1

λ1
S2

[
φ∆1 (t0, t2)

]
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4) S1S2

[
φ∆2

2 (t1, t2)
]
= 1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ∆2

2 (t1, t2)∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)

[∫∞
t
′
0

[(
e⊖ 1

λ2

(
t2, t

′
0

)
φ∆2 (t1, t2)

)∆2

−
(
e∆2

⊖ 1
λ2

(
t2, t

′
0

)
φ∆2 (t1, t2)

)]
∆t2

]
∆t1

= 1
λ1λ2

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)

[
−φ∆2

(
t1, t

′
0

)
+ 1

λ2

∫∞
t
′
0

(
eσ2

⊖ 1
λ2

(
t2, t

′
0

)
φ∆2 (t1, t2)

)
∆t2

]
∆t1

= −1
λ2

[
1
λ1

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)φ
∆2

(
t1, t

′
0

)
∆t1

]
+ −1

λ2
2

[
1
λ1

∫∞
t0

eσ1

⊖ 1
λ1

(t1, t0)φ
(
t1, t

′
0

)
∆t2

]

+ 1
λ2
2

[
1

λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
φ (t1, t2)∆t1 ∆t2

]
= − 1

λ2
S1

[
φ∆2

(
t1, t

′
0

)]
− 1

λ2
2
S1

[
φ
(
t1, t

′
0

)]
+ 1

λ2
2
S1S2 [φ (t1, t2)]

= 1
λ2
2
S1S2 [φ (t1, t2)]− 1

λ2
2
S1

[
φ
(
t1, t

′
0

)]
− 1

λ2
S1

[
φ∆2

(
t1, t

′
0

)]
Theorem 4.4 (Double Sumudu transform of integrals). If φ (t1, t2) : T1 × T2 → C is

regulated, then S1S2

[∫ t1
t0

∫ t2
t
′
0
q (η1, η2)∆η1 ∆η2

]
= λ1λ2S1S2 [q (t1, t2)].

Proof. Let Q (t1, t2) =
∫ t1
t0

∫ t2
t
′
0
q (η1, η2)∆η1 ∆η2

S1S2 [Q (t1, t2)]

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
Q (t1, t2)∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0

e⊖ 1
λ1

⊖ 1
λ2

(
t1,t2,t0,t

′
0

)
(
1+µ1

1
λ1

)(
1+µ2

1
λ2

)Q (t1, t2)∆t1 ∆t2

= λ1λ2

λ1λ2

∫∞
t0

∫∞
t
′
0

(
⊖ 1

λ1
⊖ 1

λ2

)
e⊖ 1

λ1
⊖ 1

λ2

(
t1, t2, t0, t

′
0

)
Q (t1, t2)∆t1 ∆t2

By using integration by parts rule and Fundamental theorem of calculus andQ
(
t0, t

′
0

)
= 0,

we get

= λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
q (t1, t2)∆t1 ∆t2

= λ1λ2S1S2 [q (t1, t2)].

Definition 4.5 (Convolution Property). [5, 8, 13–17] If φ1 : T1×T2 → C is rd-continuous
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and

φ2 : T1 × T2 → C is piecewise rd-continuous function of exponential type II, then the

double convolution of φ1 and φ2 denoted by φ1 ∗ ∗φ2 given by

[φ1 ∗ φ2] (t1, t2) =
∫ t1
t0

∫ t2
t
′
0
φ1 (ξ1, ξ2)φ2 (t1, t2, σ1 (ξ1) , σ2 (ξ2)) ∆ξ1∆ξ2

Where φ2 (t1, t2, σ1 (ξ1) , σ2 (ξ2)) is delay of φ2 (t1, t2) by σ1 (ξ1) ∈ T1 and σ2 (ξ2) ∈ T2.

Theorem 4.6 (Convolution theorem for the double Sumudu transform). Let φ1 : T1 ×

T2 → C and φ2 : T1 × T2 → C be rd-continuous functions of exponential type II, having

the double Sumudu transform S1S2 [φ1 (t1, t2)] and S1S2 [φ2 (t1, t2)] respectively. Then

S1S2 {[φ1 ∗ φ2] (t1, t2)} = λ1λ2S1S2 [φ1 (t1, t2)] · S1S2 [φ2 (t1, t2)].

Proof. By the definition of the double Sumudu transform on time scales, we obtain

S1S2 {[φ1 ∗ φ2] (t1, t2)} = 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
{[φ1 ∗ φ2] (t1, t2)}∆t1 ∆t2

= 1
λ1λ2

∫∞
t0

∫∞
t
′
0
eσ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

){∫ t1
t0

∫ t2
t
′
0
φ1 (t1, t2, σ1 (ξ1) , σ2 (ξ2))φ2 (ξ1, ξ2) ∆ξ1∆ξ2

}
∆t1 ∆t2

=
∫∞
t0

∫∞
t
′
0
φ2 (ξ1, ξ2)

×
{

1
λ1λ2

∫∞
t0

∫∞
t
′
0
φ1 (t1, t2, σ1 (ξ1) , σ2 (ξ2))Gσ1(ξ1),σ2(ξ2) (t1, t2) e

σ1σ2

⊖ 1
λ1

⊖ 1
λ2

(
t1, t2, t0, t

′
0

)
∆t1 ∆t2

}
∆ξ1∆ξ2

=
∫∞
t0

∫∞
t
′
0
φ2 (ξ1, ξ2) S1S2

[
Gσ1(ξ1),σ2(ξ2) (t1, t2)φ1 (t1, t2, σ1 (ξ1) , σ2 (ξ2))

]
∆ξ1∆ξ2

=
∫∞
t0

∫∞
t
′
0
φ2 (ξ1, ξ2) e⊖ 1

λ1
⊖ 1

λ 2

(
σ1 (ξ1) , σ2 (ξ2) , t0, t

′
0

)
S1S2 [φ1 (t1, t2)]∆ξ1∆ξ2

= S1S2 [φ1 (t1, t2)]

[
λ1λ2

λ1λ2

∫∞
t0

∫∞
t
′
0
φ2 (ξ1, ξ2) e

σ1σ2

⊖ 1
λ1

⊖ 1
λ 2

(
ξ1, ξ2, t0, t

′
0

)
∆ξ1∆ξ2

]
= λ1λ2S1S2 [φ1 (t1, t2)] · S1S2 [φ2 (t1, t2)].
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5 Applications

Example 5.1. [14, 18] Consider the following partial-integro dynamic equation for T1×T2

such that t0 ∈ T1, t
′
0 ∈ T2.

φ∆1 (t1, t2)+φ∆2 (t1, t2) = −1+e1 (t1, 0)+e1 (t2, 0)+e1⊕1 (t1, t2, 0, 0)+
∫ t1
t0

∫ t2
t
′
0
φ (τ1, τ2) ∆τ1∆τ2

with initial conditions,

φ
(
t1, t

′
0

)
= e1

(
t1, t

′
0

)
, φ (t0, t2) = e1 (t2, t0).

Solution: Applying the double Sumudu transform on both sides, we get

1
λ1
S1S2 [φ (t1, t2)] − 1

λ1
S2 [φ (t0, t2)] +

1
λ2
S1S2 [φ (t1, t2)] − 1

λ2
S1

[
φ
(
t1, t

′
0

)]
= S1S2 [−1] +

S1S2 [e1 (t1, 0)]+S1S2 [e1 (t2, 0)]+S1S2 [e1⊕1 (t1, t2, 0, 0)]+S1S2

[∫ t1
t0

∫ t2
t
′
0
φ (τ1, τ2) ∆τ1∆τ2

]
.

Which gives

1
λ1
S1S2 [φ (t1, t2)] − 1

λ1
S2 [e1 (t2, t0)] +

1
λ2
S1S2 [φ (t1, t2)] − 1

λ2
S1

[
e1

(
t1, t

′
0

)]
= S1S2 [−1] +

S1S2

[
e1

(
t1, t

′
0

)]
+S1S2 [e1 (t2, t0)]+S1S2

[
e1⊕1

(
t1, t2, t0, t

′
0

)]
+S1S2

[∫ t1
t0

∫ t2
t
′
0
φ (τ1, τ2) ∆τ1∆τ2

]
.

By substituting the initial conditions, we have

1
λ1
S1S2 [φ (t1, t2)]− 1

λ1

[
1

1−λ2

]
+ 1

λ2
S1S2 [φ (t1, t2)]− 1

λ2

[
1

1−λ1

]
= −1+ 1

1−λ1
+ 1

1−λ2
+ 1

(1−λ1)(1−λ2)
+

λ1λ2S1S2 [φ (t1, t2)].

On simplification, we obtain

S1S2 [φ (t1, t2)] =
1

(1−λ1)(1−λ2)
.

Taking the inverse Sumudu transform, we get

φ (t1, t2) = e1⊕1 (t1, t2, 0, 0).

presents a necessary solution. □
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Example 5.2. Consider the following partial dynamic equation for T1 × T2 such that

t0 ∈ T1, t
′
0 ∈ T2.

φ∆2
1 (t1, t2) + φ∆2

2 (t1, t2) = 0

with the conditions,

φ
(
t1, t

′
0

)
= sinh1

(
t1, t

′
0

)
, φ∆2

(
t1, t

′
0

)
= 0

φ (t0, t2) = 0, φ∆1 (t0, t2) = cos1 (t2, t0).

Solution: Applying the double Sumudu transform on both sides, we get

1
λ2
1
S1S2 [φ (t1, t2)]− 1

λ2
1
S2 [φ (t0, t2)]− 1

λ1
S2

[
φ∆1 (t0, t2)

]
+ 1

λ2
2
S1S2 [φ (t1, t2)]− 1

λ2
2
S1

[
φ
(
t1, t

′
0

)]
−

1
λ2
S1

[
φ∆2

(
t1, t

′
0

)]
= 0.

By substituting the initial conditions, we obtain

1
λ2
1
S1S2 [φ (t1, t2)]− 0− 1

λ1
S2 [cos1 (t2, t0)]+

1
λ2
2
S1S2 [φ (t1, t2)]− 1

λ2
2
S1

[
sinh1

(
t1, t

′
0

)]
− 0 = 0.

Which gives

1
λ2
1
S1S2 [φ (t1, t2)]− 1

λ1

[
1

(1+λ2
2)

]
+ 1

λ2
2
S1S2 [φ (t1, t2)]− 1

λ2
2

[
λ1

(1−λ2
1)

]
= 0.

On simplification

S1S2 [φ (t1, t2)] =
λ1

(1−λ2
1)(1+λ2

2)
.

Taking the inverse Sumudu transform, we get

φ (t1, t2) = sinh1

(
t1, t

′
0

)
cos1 (t2, t0).

presents a necessary solution. □
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Conclusion

In this article, we generalized the double Sumudu transform on time scales. We proved the

existence theorem, along with the transform of integral, transform of derivative, shifting

theorem, and convolution theorem. The double Sumudu transform can solve partial

dynamic and integro-dynamic equations.

Conflict of interests

The authors declare that there is no conflict of interests.

Acknowledgment

The authors are very grateful to the two reviewers for carefully reading the paper and for

their constructive comments and suggestions which have improved the paper.

References

[1] H. A. Agwa, F. M. Ali and Adem KIlicman A new integral transform on time scales

and its applications, Advances in Difference Equations, 2012(60) (2012), 1–14.

[2] R. A. Agrwal, M. Bohner, D. O’Regan and A. PetersonDynamic equations on time

Received: August 03, 2025 176



International Journal of Applied Mathematics
Volume 38 No. 1 2025
ISSN: 1311-1728 (printed); ISSN: 1314-8060 (online)

scales: a survey, Journal of Computational and Applied Mathematics, 141, (2002),

1–26.

[3] M. Bohner and A. Peterson, The Laplace transform and Z-transform:unification and

extension, Methods and Applications of Analysis, 9(1) (2002), 155-158.

[4] M. Bohner and A. Peterson, Dynamic Equation on time scales: An introduction with
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