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Abstract

In this first paper of a series, we revisit all major systematic uncertainties
that affect a complete and unbiased sample of five finite difference schemes
for diffusion-like equations. In order to provide the coherent picture, unlike
the existing way, we use as the key tenets both the reverse Taylor’s analysis
and the discrete Fourier’s analysis, as well as the monotonicity analysis. For
every type of scheme, their theoretical uncertainties are examined. A detailed
graphical investigation is also provided and used to give a physical reinterpre-
tation of the Courant-Friedrichs-Lewy-type condition. We find that no scheme
considered in this study resolves the smaller length scales well. Furthermore,
we present several numerical experiments on an equal footing corroborating
our demonstrations and proving whether the accuracy of each scheme is im-
paired by the discontinuities in the data. A comparison with each other is
made as well. Our results indicate that the simplest Schmidt’s scheme is also
preferred by experiments.
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1. Introduction

The old finite difference method is presently used in numerous compute
resources and courses, not only in mathematics [1], but also in natural sciences
[2], engineering [3, 4], and noticeably even in social sciences [5]. However, it
is not easy to find the why similar schemes on a given partial differential
equation provide dissimilar results, and even a given scheme on comparable
partial differential equations offers disparate results. By relying on general
diagnostic tools, this series aims to find it.

Here we plan to numerically integrate the full heat-like equation, which
remains technically challenging [6]. To say the least, apart from its nonlineari-
ties, this initial boundary value problem is a combination of two fundamentally
different physical processes: one of them is associated with diffusion, in which
case the underlying partial differential equation is parabolic; while the other
one is associated with advection, in which case the underlying partial differen-
tial equation is hyperbolic. Thus, first we program an unified understanding of
each one of them (which does not seem to be quite well-established) to achieve
our prospect.

Although many authors have been numerically solving partial differential
equations for a little over a century, since the first application of the finite
difference method to them in 1910 [15], there have been relatively few sys-
tematic studies on the numerical approximations in the specialized literature
and even fewer of these have been comprehensive investigations to the basic
principles to the best of our knowledge. Also in textbooks [5, 4, 1, 2, 3] some
practical issues are typically ignored. It is therefore timely, without loss of
novelty, to understand in practice and test in depth all the difficulties and
subtleties that inevitably appear in any numerical solution and specifically in
the simpler ones. In fact, the goal of this series is therefore to understand
the rich phenomenology in a priori similar results implying new theoretical
analysis of the proposed procedures and simulations, specially in the case of
the full equation but also in the other cases.

In the present paper, the first in the series, we finite difference integrate the
simplest (Dirichlet, linear and unidimensional) parabolic differential equation
using all at most three-level, low-order schemes. Also, we do it in the chrono-
logical sequence in which they were developed. While doing so, we explain
all the methodological insights and concerns of the difference equation needed
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to follow the very recent review by Sagaut et al. [6]. This is the position of
our entry-level paper with respect to the state of art. We shall not consider
related methods, but the same principles apply.

The paper is organized as follows. As the first paper in the series, Section
2 is devoted to some basics of finite difference approach, from a physical more
than a mathematical perspective. This covers the key notions not only of
consistency, stability, and accuracy, but also of convergence. With these con-
ceptual underpinnings, in Section 3, we rigorously investigate all five pioneer-
ing schemes which our topical current understanding of parabolic differential
equations is based on, namely the Richardson’s, Schmidt’s, Crank-Nicolson,
Laasonen’s and Du Fort-Frankel schemes. In Section 4 we implement all of
these schemes. Then, as a proof of concept, we both discuss their performance
properties and eventually compare them with each other. Finally, Section 5
presents a short summary and conclusive remarks. Motivated in particular by
discontinuities in the data, A shows the exemplary initial value problem, as
simple as it is very interesting, we apply in Section 4.

2. Finite differencing basics

In this section, we introduce the very powerful finite difference basic ap-
proach to solve partial differential equations and examine its error. To achieve
this we follow several techniques: by a heuristic derivation first pioneered by
Hirt [7], by extensive discrete Fourier analysis first pioneered by von Neumann
(e.g., see [8]), and by direct calculation against monotonicity first pioneered
by Godunov [9]. We shall investigate agreement among the different methods.
The relative mathematics and its demonstration are kept to a bare simplest
minimum in the review.

2.1. Discrete geometry.

2.1.1. The grid function. The primary solution quantity of any numerical
method, and in particular the finite difference approach, is the real-valued
scalar field T', which is a function of space x and time t; i. e. the temperature
at any point in a two-dimensional domain is characterized by a function 7' =
T(z,t). In the discrete setting of the numerical method however, the function
is retained only at a finite number of points in space and time and the function
evaluated at the discrete point (x,t") is referred to as the grid function T]”;
i.e. we usually replace spatial domain with N, points with a uniform grid
spacing Az, whereas the time interval of interest is discretized with N; points
with a uniform time step At. Of course, it is therefore of consequence to use
grids that are optimal for the significant time and length scale posed by the
physics of the problems.

Then, even before we compute the numerical solution grid function, to fully
understand its local errors incurred at the different time and length scales or,
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in Fourier space, at different wavenumbers then we shall naturally think of the
grid function as being formed as a superposition of its harmonic components:

max max
T]n _ Z Ay et (kp jAz—wyunAL) _ Z Ay et ku (jAz—vnAt)
p=min pu=min
max (2.1)
= Y A(nAr)ettuide
p=min

where k,, is the discrete wavenumber, w, is its angular frequency, v is the
propagation speed and Ay = |Ag| e’ ? is the initial complex amplitude. Eq. 2.1
is the complex notation describing the real waves in space and time:

max

RTT) = > |Aol cos (kyx — wyut + @), (2.2)

pu=min

with real amplitude |Ag| and phase constant ¢. However, which is particularly
important here, in the rectilinear grid of size Az only a finite number of
harmonic waves can exist. On the one hand, because we need at least three
points for the wave, namely for its amplitude, wavelength and phase shift,
then the Fourier mode with the the shortest wavelength (referred to as the
Nyquist wavelength) that is resolved by our grid is given by 2 Az; i.e. kpar =
/\Zn = A On the other hand, because on the grid two wavenumbers k1 and
ko give the same values of €!*72% if k) Ax = ko Az + 271 (phenomenon referred
to as aliasing), then on the grid we only can see —m < kAx < 7; i.e., taking
the symmetry of the Fourier modes into account, the only relevant values of
consequence to analyze in the problem are the following range of wavenumbers
(named resolution requirements):

0 < kAzx <. (2.3)

The lowest value of k is 0 corresponding to the constant wave mode in Eq. 2.1.
If k < 5x; are called low wavenumbers (if KAz is small then waves have long
wavelengths in comparison to Ax), which oscillates more slowly; and viceversa
for kAx near 7.

Finally, after we compute the numerical solution grid function, to measure
global errors in it we shall naturally derive the grid function absolute error
with respect to the I2-norm either by:

Nz
[AT||2(t") = | Aw Yy |T7 =Ty, t7)2, (2.4)
j=1
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which involves a summation only over all nodes in space and therefore remains
a function of time; or, in a completely analogous way, by:

Nz N

AT = | Aw At ST - T(ay, 1), (2.5)
j=1n=1

where T'(x;, t") is the exact solution. We shall use both of these formulas in
the series. This being said, when the exact solution is not known the error can
still be equally computed by employing a third (o more) numerical evaluation
of the solution.

2.1.2. The difference quotients. Of course, in the discrete setting, the finite
difference approach proceeds by replacing the derivatives, in time as well as
in space, in the differential equation with difference quotients based only on
values of the grid function. The invaluable tool we follow to this purpose is the
local Taylor-series expansion; a choice motivated by these series being suitable
for understanding the terms neglected by themselves as well, as we shall show
shortly. Each of these replacements is achieved as follows.

(1) Temporal differences
We may write the forward, one-sided first derivative of T at the
point (z;,t") by Taylor expanding the value Ti"Jrl around this point,

oT 19T

T;‘“ =17+ E(mj, t") At + 5ﬁ(mj, t") (A1) + O((At)?), (2.6)
to obtain (isolating the time derivate and dividing by At):
oT T -1y
—(zj, t") = L——L At). 2.
g ) = L o) (27)

Then by neglecting terms of higher order in this expression Eq. 2.7 may
be used to formulate a finite difference approximation to the time rate
of change of T'. Furthermore, since we know 70, such an approximation
in time is the obvious choice. Note that to simplify expressions such
as those in these equations we use the big-Oh notation (first used by
Bachmann and popularized by Landau).

However, we may also choose to write centered first derivative of T'
at the point (x;,t") by eliminating the second order terms by using
the two Taylor expansions T;‘H and Tjn_l, i.e. by subtracting from
Eq. 2.6 the following Taylor expansion

oT 10°T
n—1 _ am un oqn 2 3
TP =T = (g ) At + 5o (2, 1) (AD? + O((A1)°),  (28)
to obtain:
oT Tt 1!

E(xj’ t") = 5 Az +0((At)?), (2.9)
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which by neglecting terms of higher order may also be used to formulate
another more accurate finite difference approximation to the same first
order time derivative.
(2) Spatial diferences
We may perform exactly the same calculations based on Taylor series
expansion to arrive at finite difference approximation for the spatial
derivatives, i.e. to construct either a centered finite difference approx-

imation,
or i1~ Ti
87(%’7 t") ~ ﬁa (2.10)
or a forward approximation,
oT .”_H —Tn
These two equations are examples of two-point derivative at position

J-
Similarly, we may also construct approximations to higher order

derivatives. For instance, we may write the centered second order
derivative of T" with respect to = by first eliminating the first order
derivatives by using the two following Taylor expansions:

n . 0T n 10°T n
Ty = TP (g 1) A 35 ) (A2 + O((A2)) (212)
and
n n or n 1 82T n 2 3
TIy = TP = S ) A 5 S, ) (A2 + O((A0)), (213)
i.e. by adding Egs. 2.12 and 2.13 to obtain:
PT . T 2T AT :
ﬁ(gjj’ t") = Aol + O((Ax)?). (2.14)

Then, again, by neglecting terms of higher order in this expression
Eq. 2.14 may be used to formulate another finite difference approxi-
mation to the second order space derivative of 7. This is a three-point
derivative at position j.

2.2. Error estimation. The ultimate aim of any numerical method, so of
the finite difference approach in this series, is the accuracy of the solution
quantity. In order to achieve it, it is necessary that scheme satisfies three
criteria as defined below and explained in the next four subsections.

e A numerical finite difference scheme is consistent if it becomes the
corresponding partial differential equation as the grid size and time
step approach zero.

e A difference approximation is stable if its error remains bounded.
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e A difference equation is convergent if its solution approaches that of
the partial differential equation as the grid size approaches zero.

2.2.1. The consistency: Hirt’s reverse Taylor analysis. Once a finite
difference approximation is constructed we have to analyze it with respect to
its physical consistency.

Whether a finite difference approximation is based on Taylor series expan-
sions, we already know that the consistency requirement is satisfied. However,
even then we find very useful the technique introduced by Hirt [7] in deducing
the consistency, as well as the order of accuracy, of any finite difference ap-
proximation. In fact, much more will be deduced by using the Hirt’s analysis
shortly.

The idea is to reduce the difference equation to an equation (indeed, con-
taining an infinite number of partial derivatives) by expanding each of its
terms in a Taylor series, and then eliminating time derivatives higher than
first order and mixed time and space derivatives. In order to achieve it, we
must raise and/or lower their indices by Taylor-expanding until all of them
result in the same point. Only if we do this without the use of the original
differential equation [10], then the equation obtained is called the modified
equation associated with the difference scheme. Finally, the limit of the first
several lowest-order terms appearing in the modified equation which are not
in the original partial differential equation, when the grid size and time step
go to zero, allows us to prove consistency.

Besides that, the lowest-order powers of the increments appearing in these
terms is the local error of the algorithm.

2.2.2. The stability: von Neumann’s discrete Fourier analysis. Ad-
ditionally, once a finite difference approximation is designed we also have to
analyze it with respect to its stability.

Even with nonlinear differential equations, we find extremely useful the
technique introduced by von Neumann (e.g., see [8]) in deducing the stability
of any finite difference approximation. In fact, much more will be deduced by
using the von Neumann’s analysis shortly.

The idea is that just one discrete complex Fourier component (cf. Eq. 2.1),
A(nAt) e'* 727 unbounded within any given finite time span is enough to get
a scheme to explode. Thus, the von Neumann’s analysis consist of considering
the behavior of the complex amplitude ratio or growth factor

A((n+ 1)At)

A(nAt) 7
that has to satisfy the following basic stability condition, in order to have both
physical and numerical stability:

G = (2.15)

Gl <1, (2.16)
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for the wavenumber range given by Eq. 2.3. Depending on the algorithm,
the scheme’s frequency content might vary, ranging from domination of low
wavenumbers (low frequencies) up to high wavenumbers (high frequencies);
which determines if it is appropriate to resolve all the time and length scales
posed by the physics of the problem, i.e. the resolution requirements. We note
that G can become less that 0, which means the numerical solution will decay
but in an oscillatory fashion.

On the other hand, the analysis of the next-to-leading order term of the
modified equation is a complementary way to check this; i.e. the Hirt’s method
is another way to obtain whether the algorithm is stable [11, 12, 13, 14].

2.2.3. The accuracy: more from Hirt’s and von Neumann’s analysis.
Furthermore, once a finite difference approximation has been sanctioned with
respect to its consistency and stability as well as its order of accuracy we still
can and should analyze it with respect to the structure of its local error whose
order is the only thing we know about it so far. Based on these considerations,
the goal will be to solve some unphysical problems that inevitably appear due
to the numerical scheme used in itself, i.e., mainly, to introduce strategies
to countered or correct for such systematic biases. In the fourth paper in
the series, these aspects will be argued. Here, we quantify these systematic
truncation errors making again use of both the Hirt’s analysis and the von
Neumann’s analysis as follows.

(1) More from Hirt’s analysis

As a prelude to how to use the Hirt’s analysis to estimate these al-
gorithmic errors, let us first apply a wave solution to each of the linear
differential equations we are interested in and also to the equations
involving the third derivative with respect to position. Indeed, as will
be shown in this series, all of these equations (linear and nonlinear) ad-
mit wave mode solutions. Therefore, if we apply a continuous Fourier
series (formed by replacing jAz by x and nAt by ¢ in Eq. 2.1) to each
of them, we shall find the following global behaviors:
(a) To the advection equation (the second paper in the series) involv-

ing the first x-derivative,

or  oT

where a is the speed along the x-axis, the general analytical solu-
tion becomes:

T(x,t) =) Agelhn@mal), (2.18)
pn=0
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i.e. the phase speed is v = a or the frequency is w, = k, a. There-
fore, if a is uniform all the waves propagate with the same velocity,
and hence the solution is neither dissipative nor dispersive.
To the Fourier diffusion equation (this paper) involving the second
x-derivative,
or  o0°T
ot~ Yoz
where « is the diffusion coeflicient, the analytical solution be-
comes:

(2.19)

oo oo
T(.T, t) _ ZAO et ky(z+iakyt) ZAO et kuxefa kﬁt7 (220)
p=0 u=0

i.e. the frequency is w, = zk:i «, and hence the amplitude de-
creases exponentially as time increases. Therefore, the solution is
dissipative and no dispersive. In fact, we also see that the part of
the analytical solution associated with the shorter waves (higher
wavenumbers) decreases faster than the part associated with the
longer waves (lower wavenumbers). We search for the signature
of this phenomenon, dubbed as the (not physical but) numerical
stiffness after its discoverers [18], in this series.

To the equation involving the third x-derivative,

or o*T
=y 2.21
ot Ox3’ (2.21)
the analytical solution becomes:
00 ' )
T(x, t) =)  AgeFntbhut), (2.22)
n=0
i.e. the phase speed isv = —b kﬁ and the frequency is w,, = —ki b.

Therefore, waves of different wavelenghts propagate at different
speeds, and hence the solution is no dissipative but dispersive.
Especially, and not incidentally, these dispersive waves propagate
in the the opposite direction of Eq. 2.18. In fact, the frequencies of
the same equations but involving both even-order and odd-order
x-derivatives have alternating signs.

In that way, now if we apply a Fourier series solution to the
advection-diffusion equation (the third paper in the series) in-
volving both the first and the second x-derivatives

or  or = 0T
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then we shall find that the analytical solution becomes:

0o 0o
T(.%', t) _ ZAO eiku (z+iakyt—at) _ ZAO eiku (a:fat)efakit’ (224)

©n=0 p=0
i.e. the frequency is w, = k, a—H’ki a. Hence, the solution is dis-
sipative and no dispersive (according to its constant coefficients).
The same behavior as that for the diffusion equation.
(e) In the same way, the analytical solution to the equation in which
first, second and third x-derivatives all occur,

or oT 2T 9T
5 = 0y, tag g —bog 2.25
ot ¢ ox ta Ox? o3 ( )
becomes:
= 2
T(z, t) = ZAO et bu (z+iok, t—at+bk] t)
NOZOO (2.26)
= Z A ethn (emat b2 ) —a kit
©n=0

i.e. the propagation velocity is ¢ = a — bki and frequency is
wy, =k, a— kz b+1 kﬁ «, and hence the solution is both dissipative
and dispersive.
It is clear from all of this evidence that the second x-derivative is
a dissipative term and the third is a dispersive one. In fact, all the
even order derivatives are dissipative and all the odd order derivatives
greater than one are dispersive, implying that in general the effect
of dissipation dominates over dispersion. Thus, it is clear that any
modified equation, i.e. any difference algorithm, is both dissipative
and dispersive. Specifically, given that the frequency of a numerical
wave component is always going to be a complex number, Wy, =
R(Wnum) + ¢ I(Wnum), then, by applying the discrete Fourier series
grid solution of Eq. 2.1 to any modified equation up to third order in
derivatives, the numerical solution becomes:
n — ik ('AerMnAt) —J(w ) n At)
T = Y Ag(nAt)etU z e~ (Wnum , (2.27)

pu=min

with R(wpum) as well as J(wpym) depending on the wavelength (and
generally J(wpum) # i k% a); that is, we always find that the numer-
ical solution presents both dissipative and dispersive errors. Well, in
diffusion the propagation velocity is zero, Re(wnum) = 0; although of
course there exists numerical dissipation. Even we may sometimes find
false numerical modes in the positive x direction, as explained above.
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In other words, despite the (continuous) differential equation is nei-
ther dissipative nor dispersive (propagates the initial condition, at the
constant velocity, without reduction of its amplitude), the (discrete)
difference equation is generally both diffusive and dispersive.

That said, note that contrary to the accuracy, the stability condi-
tion (Eq. 2.16) requires to have a greater dissipative error, by way of
illustration.

Therefore, the Hirt’s analysis already used also gives us a qualita-
tively simple explanation, which is competitive to the von Neumann’s
analysis, on the mechanisms involved in the dissipation and dispersion
algorithmic errors, indicating whether the algorithm is physically rea-
sonable. In fact, Eq. 2.27 summarizes the potential of the Hirt’s error
estimation. Having said all of this, its major handicap is that the Hirt’s
error estimation does not provide accurate results not even with linear
differential equations. Notwithstanding this shortcoming, we conclude
that the Hirt’s analysis offers an average description of evolutionary
behaviors of both amplitudes and phases that is appropriate at least
qualitatively.

More from von Neumann’s analysis

Alternatively, from the point of view of the von Neumann’s analysis,
we can see that the time evolution of the numerical solution is fully
contained in the growth factor, Eq. 2.15. Specifically, since wpym, is a
complex function, the growth factor can be converted from rectangular
to polar form, i.e. separated in an numerical amplitude and a numerical
phase:

G = |Gle " Pnum, (2.28)
in such a way that the modulus of G will influence the amplitude of
the numerical solution, while its phase will influence the phase of the
numerical solution, i.e. the relative error in amplitude (aka dissipa-
tion error) in one of the Fourier modes of the numerical solution of
our difference equation is stated as being the ratio of the computed
amplitude to the exact amplitude:

|G‘ e kAt

0A = e~ k2At ’

(2.29)

while its relative error in the phase (aka dispersion error) is stated as
being by the ratio of the computed phase angle to the exact phase
angle: A

Pnum — v t
0p = JEAL (2.30)
If 6¢ > 0, referred to as a leading phase error, this means that the
Fourier components of the numerical solution have a wave speed greater
than that of the exact solution. Similarly, if ¢ < 0, referred to as a
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lagging phase error, this means that the Fourier components of the
numerical solution are decelerated with respect to that of the exact
solution.

Thus, the von Neumann’s analysis already used also gives us a quan-
titatively simple explanation, which is complementary to the Hirt’s
analysis, on the mechanisms involved in the dissipation and dispersion
algorithmic errors, e.g. showing us even the high-frequency (i.e. os-
cillatory) and low-frequency (i.e. smooth) components separately. In
fact, Eq. 2.28 summarizes the high potential of the von Neumann’s
error estimation.

2.2.4. The convergence: Godunov’s monotonicity analysis. Lastly, we
can also sometimes find another kind of error nonlocal, thereby impacting the
rate of convergence. Both the unavoidable dissipation and dispersion errors
are within the truncation error, even if there are no such mechanisms in the
governing differential equation. Likewise, despite the underlying equation can-
not never generate new maximum or minimum values over those contained in
the initial or boundary conditions, then this is not necessarily true for a dif-
ference equation. Surprisingly, problems of this kind, with the risk of getting
(bounded but) spurious oscillations in the numerical solutions, always appear
with the second (and higher) order schemes when applied to the advection
equation not only in presence of discontinuities of the analytical solution but
also its derivatives, by way of illustration. Even more surprisingly, in numer-
ical solutions to the diffusion equation monotonicity conditions may result in
negative grid functions at some points.

It was Godunov [9] in 1959 who demonstrated that such wiggles are the
consequence of the non-monotone behavior of the aforementioned second order
algorithms. Indeed, after providing the formal definition of that a difference
scheme will be monotone if no new extrema be created by it, i.e. the new
solution must be contained within the same variation range of the solution at
an earlier time step,

St - <y T -1y, (2.31)
J 7

he was able to prove that linear monotone schemes for the advection equation
can be only first order accurate (although first order schemes are not always
monotone), independently of the phase error.

Thus, still before implementing a scheme on the computer, we should
analyze it with respect to its (preservation of) monotonicity. To do so, we shall
therefore estimate the explicit conditions on a numerical scheme to satisfy this
requirement using the criterion for which the new solution, Tj"“, is a convex
combination (i.e. where all coefficients are non-negative and, accordingly, sum
to unity). However, with implicit integrations the monotonicity property is
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not sometimes so easy to check, the convex combination is far too crude for
a reliable criterion and the examination of the negative increment in the Eq.
2.31 (by virtue of the absolute value) is required in these rare cases.

3. The difference equations

In this section we lay groundwork for detailed follow-up performance tests.
We thoroughly revisit the finite difference equations for canonical Eq. 2.19
up to second order in the derivatives and also carefully examine the sources
and form of their theoretical uncertainties, i.e. we answer analytically to all
three aforementioned criteria. We highlight the conceptual differences between
not only hierarchical and monolithic schemes but also notably two and three
level hierarchical schemes. We also show for the first time the risk of spatial
oscillations throughout the entire range of wavenumbers, that is to say we
examine separately all the Fourier components of the spatial variation. We
sort the exposition, motivated by technical considerations lacking in literature,
by chronology and acknowledging their authors.

TABLE 1. Schemes analysed in this work. Note that n repre-
sents the temperature at the current time step whereas n + 1
(colored in red) represents the new (future) temperature. Note
also the temperature one time step in the past, n — 1 (colored
in violet). Common features and differences are visible.

Author Algorithm
Richardson [15] Tj"+1 = T]ﬂ* T2F (T, — 2T +T141)
Schmidt [16] T_f“ =FTr,+(1—-2F)T"+FTy,
Crank-Nicolson [19] -F T_,/."'J]l +2(14F) T}” R 77/_”4’11

—FT' +2(1—-F)T + FTl,
Laasonen [21] —FT" +(A+2F) T = FTI N =T
Du Fort-Frankel [22] 7t = (};gﬁ) T+ (1i§F) (T7o1 + 1)

3.1. The Richardson’s 1910 three-time-level explicit scheme.

3.1.1. Construction. In 1910 Richardson [15], who pioneered the numerical
study of partial differential equations and their potential role in physics, de-
vised a scheme which was explicit in time and gave values at any time level in
terms of values at the previous two time levels. To achieve this, he discretized
both time and space derivatives by second order central differences, Eqs. 2.9
and 2.14 respectively, i.e.,

1 -1
Tt Ty 2T+ TR
2 At (Azx)?

(3.1)
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However, as a three-time-level bottom-up scheme that it is, the Richardson’s
scheme has the problem of setting the initial grid function value; i.e. we have
to decide how start the process. The solution is to use any other single-step
scheme, as shortly discussed.

For easy reference we reformulate Eq. 3.1 in the second column in Table
1 introducing, for convenience, the so-called dimensionless Fourier number:

At
(Az)*’
which, like the so-called dimensionless Courant-Friedrichs-Lewy number in

solutions of hyperbolic partial differential equations (e.g. see second paper in
the series), provides a measure for the spatiotemporal discretization.

F=a«a (3.2)

3.1.2. Consistency and order of accuracy. We firstly analyze the consis-
tency of the scheme using the Hirt’s method. Substituting each value of the
grid function at points other than point (x;,¢") in the scheme in a Taylor
series around the value 77" at that point (z;,t"), i.e. substituting Eqs. 2.6,
2.12 and 2.13 in Eq. 3.1, gives

oT o*T ’T (A2 3T  o(Ax)? 0T

oy @ =« - + +

ot Ox? Ox? 6 Ot 6 Ozt
We then see from that equation, which is not yet the modified equation, that
its right hand side vanishes in the limit that the grid spacing Ax and timestep
At approach zero and therefore the Richardson’s scheme of calculation is con-
sistent. In addition, this side goes to zero as the second power of At and the
second power of Az, implying that the scheme is of second order accuracy in
both time and space as well. Indeed, this result further verifies what would
otherwise be expected because the way this scheme is based on Taylor series
expansions.

We furthermore provide here the evolution equation with only space deriva-
tives, i.e. the modified equation. In order to achieve it, we firstly find expres-
sions for %37?;; which, for this case, turns out to be zero. This implies that the
modified equation associated with the Richardson’s scheme, the equation of
the grid function from Richardson’s difference equation, is:

or 9T 0°T
5 %2 =% + O((Az)?), (3.4)
which is one of two ways to next not only calculate the local error but also
estimate the stability (see below).

(3.3)

3.1.3. Stability. We secondly analyze the stability using the von Neumann’s
method. Substituting a term of Eq. 2.1 into each term in Eq. 3.1 we get the
equation for the growth factor (Eq. 2.15),

G = é —AF 4+ 2F (e7tkAz 4 oikAT) — é —4F[1—cos(kAz)], (3.5)
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whose solutions are

Gt = —2F[1 —cos (kAx)] + /14 [2 F(1 — cos (kAx))]2. (3.6)

That is to say, given its nature of three time levels, in a given instant each
real valued growth factor associated with the Richardson’s scheme has two
temporal modes present in the numerical solution. In other words, as a three
time level that it is, this scheme has two temporal modes. Note, the solution
G4 corresponds to the physical mode because for well resolved components
(kAxz < 1) is as it should be; and viceversa (see Fig. 1):

li = =1 .
A O 0

Richardson scheme 1o Richardson scheme

051 — F=0025 “~i-. 0 TTeeal

— F=0.050 ~Soael o T

— F=0.125

0.0 F=0.250
F=0.500

—— F=1.000

]
— Numerical © =05
————— Analytical
— F=0.025 -1.0
—— F=0.050
—— F=0.125

F=0.250 -15
—0.75 F=0.500
—— F=1.000

—-1.00 -2.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0

kax kAx

-0.50

FIGURE 1. The physical (left panel) and computational (right
panel) growth factors of the Richardson’s scheme, Eq. 3.6 vs.
frequency in radians, for specific F' values as indicated in the
legend. The growth factor of the analytic solution, Eq. 2.20 vs.
frequency in radians, for the same F' values are distinguished
by dashed line colors. We show the stability region, Eq. 2.16,
and the value “0” that represents the oscillation threshold.

However, the most important of what happens to the Richardson’s growth
factor is that the magnitude of its spurious mode takes the form

|G_| =2 F[1 — cos (kAz)] + /1 + [2F(1 — cos (kAz))]2 > 1, (3.8)

which does not satisfy Eq. 2.16, implying that the Richardson’s scheme is
unconditionally unstable for the diffusion equation. In fact, this in turn tells
us all about Eq. 3.1: it is a no go scheme which can not be applied to diffusion
dominated problems.

3.2. The Schmidt’s 1924 single-step explicit scheme.
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3.2.1. Construction. In 1924 Schmidt [16] proposed a second order approx-
imation for the spatial derivative but forward in time, Eqs. 2.7 and 2.14
respectively, i.e.
n—+1
L ) SN Gl il 5 (3.9)
At (Az)? ’

which is also reformulated in Table 1 using Eq. 3.2.

3.2.2. Consistency and order of accuracy. We firstly analyze the consis-
tency of the scheme using the Hirt’s method. Substituting each value of T" at
points other than point (z;,t") in the scheme in a Taylor series around the
value T}" at that point (x,t"), i.e. we substitute Egs. 2.6 and 2.13 in Eq. 3.9,
gives
oT  0°T AtO’T (A2 3T (AP T o (Ax)? 0T
ot o2 202 6 o 24 od ' 12 0x
We then see from that equation, which is not yet the modified equation, that
the right hand side vanishes when At — 0 and Az — 0 and therefore the
Schmidt’s scheme of calculation is consistent. In addition, this side goes to
zero as the first power of At and the second power of Az, implying that the
scheme is of first order accuracy in time and second order accuracy in space
as well. Indeed, this result further verifies what would otherwise be expected
because the way this scheme is based on Taylor series expansions.
We furthermore provide here the evolution equation with only space deriva-
tives, i.e. the modified equation. In order to achieve it, we firstly find expres-

. 2T 93T AT . : i T 9T
sions for ST B and ST and secondly (be careful with this) for 900120 BaZoi

and %, by differentiating Eq. 3.10; all of which we use systematically to
eliminate the time derivatives in it. This implies that the modified equation
associated with the Schmidt’s scheme, the equation of the grid function from
Schmidt’s difference equation, is:

oT ’T  (Ax)* 9
— —a— = F—6F*—— + O((Az)? 3.11

o o T 12Al )zt T OUA)), (3:11)
which is one of two ways to next not only calculate the local error but also
estimate the stability.

4+ . (3.10)

T

3.2.3. Stability. We secondly analyze the stability using the von Neumann’s
method. Substituting a term of Eq. 2.1 into each term in Eq. 3.9 we get the
following real valued, growth factor associated with the Schmidt’s scheme:

G=1-2F+F (e tkAz 1 gikA2y — 1 _ 9 F[1 — cos (kAz)), (3.12)
which must to satisfy Eq. 2.16, —1 < G < 1. Since 0 < 1 — cos (kAz) < 2,
then G < 1; but —1 < @ only if we restrict to

1
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which, like the so-called (after its discoverers [17]) Courant-Friedrichs-Lewy
condition in solutions of hyperbolic partial differential equations (e.g. see sec-
ond paper in the series), provides critical information about how to discretize
the space and time variables of the difference equation. Indeed, this inequal-
ity states that the time step must go to zero at least as fast as (Az)?, which
is certainly very restrictive for fine spatial resolution and hence numerically
expensive for large-scale computations. In fact, this condition for stability
(not for accuracy) has a qualitatively different physical meaning from that
of the better understood Courant-Friedrichs-Lewy condition, which is shortly
discussed. We anticipate (see Eq. 3.12) that the shorter and faster waves
are most prone to instability, implying stiffness. We also foresee that when
kAx = 7 then:

lim G=1—-4F, (3.14)

kAx—m

which means that high frequency oscillations (G < 0) appear when F' is above
0.25. The comparison of Fig. 2 shows it quite well. As a result, this Courant-
Friedrichs-Lewy-type condition in explicit solutions of parabolic partial differ-
ential equations is of stiff rather than kinematic origin (see second paper in
the series). Eqgs. 2.19 and 2.23 are stiff [18].

Schmidt scheme
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F1GURE 2. The same as Fig. 1 but for the Schmidt’s scheme,
Eq. 3.12.

Additionally, the Hirt’s method is another way to obtain this. We may
think that if the first (even) term on the right hand of modified equation 3.11,
which acts as a diffusion term, has to be positive for 7} to be damped in time,
must have F' < 1/6. However, this is only a partial condition. The case is
actually quite subtle because this first (even) term on the right hand of Eq.
3.11 is of the same order as the wavenumber in the large wavenumber limit.
Thus, in this situation the necessary and sufficient condition for stability is
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10, Eq. 5.11]:
x)? )t
(Z?:I)l (Ag) (@) = At(a®) = <(1§A)t (= 6F2)>} =0 19

which implies certainly the same as Eq. 3.13, F < 1/2.

3.2.4. Accuracy. So far, we know the truncation error is of first order accu-
racy in time and second order accuracy in space. Now, thirdly, again making
use of the Hirt’s and von Neumann’s analysis we then investigate its behavior
in Fourier space; while noting that the absence of odd-order derivatives in any
diffusion difference equation indicates that, in this paper, we do not need to
consider the error related with timing or phase.

On the one hand, by applying the discrete Fourier series grid solution of
Eq. 2.1 to the Schmidt’s modified equation 3.11 including terms up to the
next-to-leading order, the damping term of the numerical solution becomes
(see Eq. 2.27):

At

Like its analytical counterpart (see Eq. 2.20), we again notice that there is no
dissipation for £ = 0 and it will be greater at higher wavenumbers. We now
present the search for stiffness in the left panel of Fig. 3 by comparing Eq.
3.16 to Eq. 2.20 in all the Fourier modes on the grid (Eq. 2.3) evaluated for
specific I’ values.

In this panel we observe that there is three possibilities for the numerical
damping factor: the case when F' < % where the Schmidt’s low wavelengths
dissipate more slowly that those in the the analytical solution do (hereafter
underdamped regimen); the case threshold when F' = % (black line in the left
panel of Fig. 3) where the Schmidt’s solution dissipate just as fast as that the
analytical solution does (hereafter critically damped regimen); and the case
when F' > % where Schmidt’s low wavelengths dissipate faster that those in
the analytical solution do (hereafter overdamped regimen). In the interesting
threshold when F' = é the next-to-leading damping coefficient is zero, and for
progressively higher values of F', depending on the frequency of the Fourier
mode, shift gradually to an anomalous overdamped process, which causes the
stiffness. Next, a more in-depth explanation of this effect is found.

On the other hand, since the exact growth factor in one of the Fourier
modes is equal to exp(—a k? At), the Schmidt’s relative amplitude error, Eq.
2.29, is given by

exp { [—a + %(F —6F?) (Ax)4k2] k2 At}. (3.16)

SA=[1—2F(1—cos(kAx))] ¥ 2 _ 1. (3.17)

In the right panel of Fig. 3 we show this relative error in all the Fourier modes
on the grid (Eq. 2.3) evaluated for specific F' values.
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Schmidt scheme Schmidt scheme

0.8

0.6

0.4
—— Numerica
————— Analytical — F=0.025
— F=0.125 — F=0.050
— F=0.167 -1.04 — F=0.125

F=0.250 F=0.250

F=0.500 F=0.500

0.0 -15
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0
kAx kax

0.2

FIGURE 3. Schmidt’s dissipation error. The left panel shows
the decays of the numerical solutions (approximated to the five-
order derivatives); while the right panel shows the relative am-
plitude error as a function of phase angle or frequency, in radi-
ans, for specific Fourier number values. The overlapping black
solid and dashed lines in the left panel show the (numerical and
semi-analytical) solutions corresponding to critical F' = é. We
conclude that the damping factor offers an average description
of evolutionary behaviors of amplitudes that is valid at least
qualitatively.

In this right panel we observe that there is three Fourier number ranges
where the Schmidt’s amplitude decreases to different degrees relative to the
corresponding ones in the analytical solution: F' < % range where Schmidt’s
low wavelengths dissipate more slowly that those in the the analytical solution
do (in agreement with the underdamped regimen from Eq. 3.16); % < F<0.25
range where they achieve overdamping (in agreement with the overdamped
regimen from Eq. 3.16); and 0.25 < F' < 0.5 range where we find that A <
—1 (i.e. the ratio of the numerical amplitude to the analytical amplitude is
negative) for them, which means that their numerical growth factor changes
its sign from one time level to the next and, consequently, they will oscillate
until eventually decay completely (we are still in the overdamped regimen). In
fact, all aforementioned spurious low wavelengths are those that go unstable
and as we observe they already appear with the marginally stable value or
limit of the stiff regime F' = 0.5 and even lower in the near-critical regime:
the relative error is smaller than —1, then T]" can be considered completely
erroneous since the error is larger in magnitude as the exact growth factor.
In this overdamped regime, where the difference equation become stiff, all the
low wavelength modes explode oscillatorily, G < —1 or |G| > 1 in Fig. 2, if
the time step is larger than that of condition for stability in Eq. 3.13.
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3.2.5. Monotonicity. Finally, looking at Eq. 3.9 in Table 1 we see that the
coefficients of the new solution are 1, 1—2 F and F, i.e. all of them are positive
in the stability region, Eq. 3.13. Hence, the Schmidt’s scheme is monotone
and preserves extrema (i.e. structure) over a very long time.

3.3. The Crank-Nicolson 1947 single-step semi-explicit scheme.

3.3.1. Construction. In 1947 Crank and Nicolson [19] achieved a forward
in time scheme using, to say the least, the average of the scheme formerly
proposed by Schmidt and the Laasonen’s scheme described below. Hence, this
scheme is not based on Taylor series expansions, implying that we do not know
apriori whether the consistency requirement is satisfied or not. In this way
they obtained the scheme:

+1 +1 +1 +1
T () (T Syt T Ty oy T

At 2 (Az)? (Ax)? ’
(3.18)
which is again reformulated in Table 1 using Eq. 3.2.

However, as a scheme that does not proceed in a hierarchical, bottom-up
fashion, the Crank-Nicolson scheme gives a (tridiagonal) system of equations
to solve for all the values of TZ-”Jrl simultaneously and we must to resort to
standard matrix equation solvers (e.g., see [20]), which is complicated to im-
plement for parallel execution. Specifically, the Crank-Nicolson scheme will be
referred to as a semi-explicit scheme. Besides, this monolithic nature of several
much-used nonexplicit schemes implies that any anomaly strongly affects the
entire solution; which, depending on the initial conditions, is not necessarily
one more attractive feature for diffusion (see next Section).

3.3.2. Consistency and order of accuracy. Eq. 3.18 now poses a sig-
nificant challenge to deriving consistency because we must reduce the num-
ber of indexes in it before raising and/or lowering them. Thus, in this sit-
uation we reformulate Eq. 3.18 once more so it would be suitable to de-
rive an equation with derivatives only. Specifically, we rewrite Eq. 3.18 as

TjnJrl =17+ F 1}@:1/2 +F T]-Tfll/Q —-2F T;H/Q. Next, substituting each value
of T" at points other than point (x;, gt/ 2) in this equation in a Taylor series

around the value 77" at that point (z;, t"+1/2) | gives

oT ’T (A2 3T  «o(Ax)? 0T

ot Y022 T 24 of3 12 0at
We then see from that equation, which is not yet the modified equation, that
the right hand side vanishes when At — 0 and Az — 0 and therefore the
Crank-Nicolson scheme of calculation is consistent. In addition, this side goes
to zero as the second power of At and the second power of Az, implying that
the scheme is of second order accuracy in both time and space.

(3.19)
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We furthermore provide here the evolution equation with only space deriva-
tives, i.e. the modified equation. In order to achieve it, we firstly find expres-
sions for %%T, and secondly (be careful with this) for %, by differentiating
Eq. 3.19; all of which we use systematically to eliminate the time derivatives in
it. This implies that the modified equation associated with the Crank-Nicolson
scheme, the equation of the grid function from Crank-Nicolson difference equa-
tion, is:

oT o*T I (Az)* 03T

ot 022 T 12At 027
which is one of two ways to next not only calculate the local error but also
estimate the stability.

+0((Az)?), (3.20)

3.3.3. Stability. We secondly now analyze the stability using the von Neu-
mann’s method. Substituting a term of Eq. 2.1 into each term in Eq. 3.18 we
get the following real valued, growth factor associated with the Crank-Nicolson
scheme:

2—2F(1—cos(kAx))
l<G= 2+ 2F (1 - cos(kAz)) =1 (3:21)
which satisfies Eq. 2.16 and demonstrates that no restrictions are put on
the resolution using the Crank-Nicolson scheme, which have the advantage of
being able to represent smooth solutions (see below). We anticipate (see Eq.
3.21) that the shorter waves are now not prone to instability, not implying
stiffness. However, we also foresee that when kAx = 7 then:

(3.22)

which means now that the solution is now oscillatory, G < 0, when F' is above
0.5 (see Fig. 4); i.e. the low (oscillatory) wavelengths are propagated as
weakly damped oscillations in time and therefore may persist for a long time
(see Fig. 4), thereby implying (not a condition or constraint but) a prominent
shortcoming.

Additionally, the Hirt’s method is another way to obtain this. The even,
first term on the right hand of modified equation Eq. 3.20, which acts as a
diffusion term (there is no dispersive derivatives, as already said), is both not of
the same order as ky,q; and always positive; implying that the Crank-Nicolson
scheme is indeed unconditionally stable.

3.3.4. Accuracy. We thirdly investigate how accurate the numerical solution
is using the Hirt’s and von Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution of
Eq. 2.1 to the Crank-Nicolson modified equation 3.20 including terms up to
the next-to-leading order, the damping term of the numerical solution becomes
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Crank — Nicolson scheme
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FIGURE 4. The same as Fig. 1 but for the Crank-Nicolson
scheme, Eq. 3.21.

(see Eq. 2.27):

exp { [—a - %F (AA?leQ] k? At}. (3.23)

Like its analytical counterpart, we again notice that there is no dissipation for
k = 0 and it will be greater at higher wavenumbers. We present the search
for stiffness in the left panel of Fig. 5 by comparing Eq. 3.23 to Eq. 2.20 in
all the Fourier modes on the grid (Eq. 2.3) evaluated for specific F' values.
We now do not observe stiffness because the next-to-leading term in Eq. 3.23
is indeed anti-damping. In all cases, we observe that the Crank-Nicolson low
wavelengths dissipate more slowly that those in the the analytical solution do,
implying there is no overdamped or stiff regime. However, we do observe that
for progressively higher values of F' the Crank-Nicolson dissipation is closer
to the one from the analytical solution; i.e. the Crank-Nicolson grid function
has just one underdamped regimen. Next, a more in-depth explanation of this
effect is found.

On the other hand, since the exact growth factor in one of the Fourier
modes is equal to exp(—a k% At), the Crank-Nicolson relative amplitude error,
Eq. 2.29, is given by

[2—2F (1 — cos (kAz))] e ¥ At
242 F (1 —cos(kAx))

In the right panel of Fig. 5 we show this relative error in all the Fourier modes
on the grid (Eq. 2.3) evaluated for specific F' values, where we observe the
marked preference for F' near 0.5. Indeed, for F' < 0.5 the low wavelengths
are underdamped (in agreement with the underdamped regimen from Eq.
3.23) while for F' > 0.5 they undergo an oscillating damping (in agreement
with Eq. 3.22), giving rise to an oscillatory behavior, A < —1. Only for
F < 0.5 the spurious oscillating modes are completely dissipated, implying

SA = —1, (3.24)
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low computational efficiency. These undesired oscillations, scarcely recognized
or underestimated in the literature [19], are accordingly due to instability
involved in the explicit half step of the not purely implicit Crank-Nicolson
method.

Crank — Nicolson scheme Crank — Nicolson scheme
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FIGURE 5. The same as Fig. 3 but for the Crank-Nicolson
scheme.

3.3.5. Monotonicity. Finally, looking at Eq. 3.18 in Table 1 we see that
the coefficients of the new solution are —0.5F, 1 + F, F and 1 — F'. Hence,
the Crank-Nicolson scheme is nonmonotone, i.e. it also may produce spurious
oscillations.

3.4. The Laasonen’s 1949 single-step implicit scheme.

3.4.1. Construction. In 1949 Laasonen [21] used the same approximation as
Schmidt did, but evaluating the space derivative forwards in time, at time step
n + 1 instead of at time step n; i.e.,
n+1 n n+1 n+1 n+1
O D = B B0 (3.25)
At (Az)?

Table 1 emphasizes that Eq. 3.25 is purely time-implicit. Therefore, as a
non-explicit scheme that it is, the solution at the next time level is computed
from the present time level by solving the tridiagonal system of equations that
Eq. 3.25 gives (e.g., see [20]). The same as the Crank-Nicolson scheme.

3.4.2. Consistency and order of accuracy. We firstly analyze the consis-
tency of the scheme using the Hirt’s method. Substituting each value of T at
points other than point (z;,t") in the scheme in a Taylor series around the
value T} at that point (x,t"), i.e. we substitute Egs. 2.6 and 2.13 in Eq.
3.25, gives

O T _AGT (APPT o (A)PIT  a(Ax) 9T
ot Y02 202" 6 o3 24 ot 12 Ozt

4o (3.26)
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We then see from that equation, which is not yet the modified equation, that
the right hand side vanishes when At — 0 and Az — 0 and therefore the
Laasonen’s scheme of calculation is consistent. In addition, this side goes to
zero as the first power of At and the second power of Ax, implying that the
scheme is of first order accuracy in time and second order accuracy in space
as well. Indeed, this result further verifies what would otherwise be expected
because the way this scheme is based on Taylor series expansions.

We furthermore provide here the evolution equation with only space deriva-
tives, i.e. the modified equation. In order to achieve it, we firstly find expres-

o°T 93T oiT

sions for Gz o and Gt and secondly (be careful with this) for —a‘?;gt

and %, by differentiating Eq. 3.26; all of which we use systematically to
eliminate the time derivatives in it. This implies that the modified equation
associated with the Laasonen’s scheme, the equation of the grid function from
Laasonen’s difference equation, is:

oM

or 0*°T  (Ax)? 9
— —a=— = F o) — Azx)t 2

o o2~ 1zard O ) g +OUA), (3:27)
which is one of two ways to next not only calculate the local error but also
estimate the stability.

3.4.3. Stability. We secondly now analyze the stability using the von Neu-
mann’s method. Substituting a term of Eq. 2.1 into each term in Eq. 3.25
we get the following real valued, growth factor associated with the Laasonen’s
scheme:

1<@ 1 <1 3.28

~—  1+2F(1—cos(kAx)) = (3:28)

which satisfies Eq. 2.16 and demonstrates that no restrictions are put on the

resolution using the Laasonen’s scheme, which have the advantage of being

able to represent smooth solutions (see below). We also anticipate (see Eq.

3.28) that the shorter waves are neither prone to instability, not implying

stiffness. The same as using the Crank-Nicolson scheme. However, quite the

opposite of what has been found in Crank-Nicolson scheme, we now foresee
that when KAz = m then G is very small:

1

A G = T

which means that the Laasonen’s scheme never produces oscillations in time,

thereby implying a unique feature (see Fig. 6 compared to Figs. 2 and 4).

As a consequence, the Laasonen’s numerical solution will be indeed smoother
than expected, e.g., from the Crank-Nicolson scheme.

Additionally, the Hirt’s method is another way to obtain this. The even,

first term on the right hand of modified equation Eq. 3.27, which acts as a

diffusion term (there is no dispersive derivatives), is both not of the same order

(3.29)
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FIGURE 6. The same as Fig. 1 but for the Laasonen’s scheme,
Eq. 3.28.

as kmar and always positive; implying that the Laasonen’s scheme is indeed
unconditionally stable.

In fact, this property of being stable turns out to be true for all purely
implicit schemes. That said, if not for stability, for accuracy we cannot use a
large time step. To clearly see it, note the ratio of the Laasonen’s numerical
damping rate (from Eq. 2.28, e"™numt — |G|) to the exact damping rate
(Eq. 2.20) is

Wpum I [1+2F (1 —cos(kAx))]
wo Fk2(Ax)?

14 (1 i 6F> (kAT)? + O((kAz)Y);

(3.30)

12

which show us that for, e.g., F' = 1.5 the error on the damping rate is about
the exact damping rate (Eq. 3.30 is on average about 1).

3.4.4. Accuracy. We thirdly investigate how accurate the numerical solution
is using the Hirt’s and von Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution of
Eq. 2.1 to the Laasonen’s modified equation 3.27 including terms up to the
next-to-leading order, the damping term of the numerical solution becomes
(see Eq. 2.27):

1 (Ax)*
—a+ —(F+6F*) ="k k> At }. 3.31
exp{ |-+ 57+ 67 (3.31)
Like its analytical counterpart, we once again notice that there is no dissipation
for k = 0 and it will be greater at higher wavenumbers. We present the
search for stiffness in the left panel of Fig. 7 by comparing Eq. 3.31 to Eq.
2.27 in all the Fourier modes on the grid (Eq. 2.3) evaluated for specific F'
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values. We now do not observe stiffness. All next-to-leading terms in Eq. 3.31
are indeed anti-damping. In all cases, we observe that the Laasonen’s low
wavelengths dissipate more slowly (indeed, too slowly) that those in the the
analytical solution do, and do so equally for progressively higher values of F'.
The Laasonen’s grid function has also just one underdamped regimen. Next,
a more in-depth explanation of this effect is found.

On the other hand, since the exact growth factor in one of the Fourier
modes is equal to exp(—a k? At), the Laasonen’s relative amplitude error, Eq.
2.29, is given by

e k2 At

14 2F (1 — cos (kAx))
In the right panel of Fig. 7 we show this error in all the Fourier modes on
the grid (Eq. 2.3) evaluated for specific F' values, where we observe that
almost all the modes, but especially those of high frequency (say, the worst
modes), are excesively under-damped (in agreement with the underdamped
regimen from Eq. 3.31) and, consequently, the Laasonen’s scheme is going to
lose accuracy. In fact, in agreement with Eq. 3.30, we now observe that the
Laasonen’s scheme becomes too little dissipative and little or no scale selective,
which indeed can lead to some loss of measurable Fourier modes and a great
reduction in sensitivity. The Laasonen’s scheme, otherwise but the same as
the Crank-Nicolson scheme, suffers from low computational efficiency.

§A 1, (3.32)
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FIGURE 7. The same as Fig. 3 but for the Laasonen’s scheme.

3.4.5. Monotonicity. Finally, looking at Eq. 3.25 in Table 1 we see that the
coefficients of the new solution are —F, 1 + 2 F' and 1, respectively. Hence,
the Laasonen’s scheme is nonmonotone, i.e. it also may produce spurious
oscillations.

3.5. The Du Fort-Frankel 1953 three-time-level explicit scheme.
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3.5.1. Construction. In 1953 Du Fort and Frankel [22] (who were working
with the wave equation) proposed the following scheme with the aim of over-
coming the stability problem due to the Richardson approach we found in Eq.
3.8 by taking the time average of T} at (z;, t"), i.e.,

LT T, (I T T
A = Aoy . (3.33)

Hence, the Du Fort and Frankel explicit scheme (see Table 1) still has the prob-
lem of setting the initial grid function value, i.e. another single-step scheme
is needed; and is also not based on Taylor series expansions, which implies
that we do not know apriori whether the consistency requirement is satisfied
or not.

3.5.2. Consistency and order of accuracy. We firstly analyze the consis-
tency of the scheme using Hirt’s method. Substituting each value of T' at
points other than point (z;,t") in the scheme in a Taylor series around the
value T7" at that point (z;,t"), i.e. we substitute Eqs. 2.6 and 2.13 in Eq.
3.33, gives
oT 0T (A2 2T (A2 T o (A 03T  (Ax)? 0T
o Yo T YAnP o 6 08 12(An2od Y12 e
(3.34)
We then see from that equation (which is not yet the modified equation) that,
due to the first term on the right hand side, the Du Fort-Frankel scheme of
calculation is consistent only if At — 0 and Az — 0 are taken such that

ﬁ—i — 0. In other words,

(1) if a time step At ~ (Az)? is used we then achieve second order accu-
racy (on space and consequently in time as well);

(2) however, for any value of % the solution is not quite parabolic but
nearly hyperbolic (i.e. it converges to that of a wave equation). We
illustrate the different effects associated to this conflicting region, such
as complex amplitudes, coalescence and divergence in the next subsec-
tions.

That is to say, the Du Fort-Frankel scheme is conditionally consistent, i.e. we
must now to be careful in choosing the time step to assure the consistency of
the scheme (if we want to use it, as suggested for its other virtues). We note
that the reason for its conditional consistency is that Du Fort and Frankel
changed the method after they (actually Richardson) made the Taylor expan-
sions in the usual way, i.e. an apparently small technical difference turn out to
have profound consequences for the way in which a difference scheme creates
the numerical solution.
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We furthermore provide here the evolution equation with only space deriva-
tives, i.e. the modified equation. In order to achieve it, we firstly find expres-
sions for &L &°T o'r T T

" ot? > ot3 ot Oxdt2’ 9z20t
and 7832;2’ by differentiating Eq. 3.34; all of which we use systematically to
eliminate the time derivatives in it. This implies that the modified equation
associated with the Du Fort-Frankel scheme, the equation of the grid function
from Du Fort-Frankel difference equation, is:

or  0*T (Ax)* 0T

— = F—12F%—— + O((Ax)*Y), 3.35

ot Ox? 12 At( )8x4 ((Az)") ( )
which is one of two ways to next not only calculate the local error but also
estimate the stability.

and and secondly (be careful with this) for

3.5.3. Stability. We secondly now analyze the stability using the von Neu-
mann’s method. Substituting a term of Eq. 2.1 into each term in Eq. 3.33
we get the following equation for the growth factor associated with the Du
Fort-Frankel scheme:

_ 1-2F 1 2F —i1k Az 1 kAx
G_(1+2F>G+<1+2F>(6 )

3.36
_(1-2F\ 1 A4F cos(kAz) (3:36)
- \1+42F) G 14+2F
Whence the two solutions for the Du Fort-Frankel growth factor are:
Gy — 2F cos (kAz) + /1 — (2 F sin (kAz))? (3.37)

14+2F ’

which means that now spurious solutions exist which can contaminate the
solution. The same as the Richardson’s solution and for the same reason:
both of them are three level schemes. This fact makes the three (or more)
level schemes such as the Du Fort-Frankel scheme difficult to understand. We
offer a more in-depth interpretation of this problem in the next subsection
concerning accuracy.

Here, as regards stability, the growth factor magnitudes are such that

(1) either 1 — (2 F sin (kAz))? > 0 which implies |G| < H2Eles kAl <
1, which satisfies Eq. 2.16 and thus no parabolic stability restriction
on the time step appears in this case;

(2) or 1 — (2 F sin (kAx))? < 0 which implies |G+| = 25=1 < 1, i.e. both

2F+1
cases satisfy Eq. 2.16.

Therefore, the Du Fort-Frankel scheme is unconditionally stable with the diffu-
sion equation, as intended by its authors. The Du Fort-Frankel scheme avoids
the Richardson’s instability. We point out that the shorter waves are most
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prone to instability (see Eq. 3.36), implying stiffness. We also point out that
when kAx = 7 then G_ is not very small:

1—2F
1‘ == — .
Mamhe t T T4 o R (3.382)
m G = —1, (3.38D)
kAxz—m

which means that the Du Fort-Frankel scheme produces high frequency oscil-
lations in time (see upper panels of Fig. 10 below). The same as the Schmidt’s
scheme (see Fig. 2).

Additionally, the Hirt’s method is another way to obtain this. Although
this is now actually quite subtle, the same as analyzing the Schmidt’s scheme.
We may now think that if the first (even) term on the right hand of Eq. 3.35,
which acts as a diffusion term, has to be positive for Tj” to be damped in time,

must have F' < % However, this in not the case. This is only a partial
condition because this first (even) term on the right hand of Eq. 3.35 is of the
same order as the wavenumber in the large wavenumber limit. Thus, in this
case the necessary and sufficient condition for stability is [10, Eq. 5.11]:

x)? x)t
S5 [0 ser- (8- om

which is always is positive, implying the same as Eq. 3.37; i.e. the Du Fort-
Frankel scheme is indeed unconditionally stable.

That being said, if not for stability, for consistency we cannot use a
large time step. Therefore, we are with the same restriction as the one
for the Schmidt’s scheme. To clearly see it, Fig. 8 shows the region 1 —
(2 F sin (kAz))? < 0 where the discrete Fourier amplitudes are a complex
quantity (white region in the Fig. 8), i.e. where we have a hyperbolic Du
Fort-Frankel scheme. Increasing F' above 0.5 induces an imaginary part to the
growth factor for certain mid frequencies.

3.5.4. Accuracy. We thirdly investigate how accurate the numerical solution
is using the Hirt’s and von Neumann’s complementary analysis.

On the one hand, by applying the discrete Fourier series grid solution of
Eq. 2.1 to the Du Fort-Frankel modified equation 3.35 including terms up to
the next-to-leading order, the damping term of the numerical solution becomes
(see Eq. 2.27):

1 5y (Az)* 5] 5
exp{[ a—|—12(F 12 F7) AL k}k‘ At}. (3.40)
Like its analytical counterpart, we again notice that there is no dissipation
for k = 0 and it will be greater at higher wavenumbers. We present the
search for stiffness in the Fig. 9 by comparing Eq. 3.40 to Eq. 2.27 in
all the Fourier modes on the grid (Eq. 2.3) evaluated for specific F' values.
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25 Du Fort — Frankel scheme
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FIGURE 8. Consistency region (by blue colour) of the Du Fort-
Frankel scheme.

We observe that there is three possibilities for the numerical damping factor:
the underdamped regimen when F < \/g where the Du Fort-Frankel low
wavelengths dissipate less rapidly that those in the the analytical solution do;
the critically damped regimen when F' = \/g (black line in Fig. 9) where the
Du Fort-Frankel solution dissipate just as fast as that the analytical solution

does; and the overdamped regimen when F' > 4/ % where Du Fort-Frankel low

wavelengths dissipate faster that those in the the analytical solution do. In the

interesting threshold when F' = \/g the next-to-leading damping coefficient
is zero, and for progressively higher values of F', depending on the frequency
of the Fourier mode, shift gradually to the stiff limit. The same anomalous
overdamping process as that for the Schmidt’s stiffness, which appears in Fig.
9. At that point, however, Du Fort-Frankel modes do not explode but yield an
incorrect solution thanks to the computational modes. Next, a more in-depth
explanation of this now somewhat complicated effect is found.

On the other hand, since the exact growth factor in one of the Fourier
components is equal to exp(—a k? At), the Du Fort-Frankel relative amplitude
error, Eq. 2.29, is given by

e k2 At

T 1+2F

Al (2F cos (kAz) £ /1 — (2F sin (mx))Z) 1, (341
for each solution from Eq. 3.37. In fact, the exact analysis of the amplification
factors here is now more difficult because of the presence of these two solutions.
To do so, we consider the two consistency regions and we first resort to the
use of the growth factors for gaining a greater insight.
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FIGURE 9. The exponential suppression factor of the Du Fort-
Frankel grid function. The overlapping black solid and dashed
lines show the (numerical and semi-analytical) solutions corre-

sponding to critical F' = /1/12.

Setting the inconsistent region aside for the moment, then the numer-
ical solution for each Fourier mode (see Eq. 2.15) becomes

TP = (1 |G + e[GO ki, (3.42)

where ¢; and co are two as yet unknown constants and the growth
factors in this region, hereafter referred to as Gg), are real (see Eq.
3.37). In other words, in a given instant both modes are present in
the numerical solution independently of each other and they both, we
have already discussed, satisfy the equation Eq. 2.16; i.e. we obtain
two families of linearly coupled modes for every extra time level. Fig.
10 shows that GELl) approaches the analytic solution +1 when At — 0,
and is referred as the physical mode; while G(_l) approaches —1, and
is referred to as the computational mode which thereby will decay in
a oscillatory fashion.

The upper left panel of Fig. 10 shows that Du Fort-Frankel G is
comparable with analytic G (upper panel) except for low waves where
the Du Fort-Frankel damping is slightly different than that of the exact
solution in agreement with the regimes from Eq. 3.40. At the same
time, the middle right panel has the opposite behavior; i.e., on the
contrary, there is very little damping for the spurious mode of low
waves, especially the 2 Az wave (see Eq. 2.3), which is completely
undamped and just will oscillate with a period of 2 At because G_
changes its sign every time step. Since we cannot hope to eliminate the
computational mode completely, we shall therefore have both a weaker
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FI1GURE 10. Upper: the physical (left panel) and computa-
tional (right panel) growth factors of the Du Fort-Frankel
scheme using F < 0.5 vs. frequency in radians, for specific
F values. Lower: the coalesced growth factors of the Du Fort-
Frankel scheme using F' > 0.5 vs. frequency in radians, for
specific F' values.

damping of the low waves and a stronger damping of the high waves
as the result of the superposition of modes in each Fourier component.

Using upper left and right panels of Fig. 10 we also observe that
for the critical value F' = 0.5 the amplitude for each time step is
completely independent of that of the immediately preceding one. In
fact, interestingly, Eq. 3.33 becomes TZ-"Jrl = %(Tﬁl + 17 ,), ie a
two time level scheme; specifically the Schmidt’s scheme, Eq. 3.9.
Furthermore, we find/observe that the amplitude of the shortest wave
(the 2 Az wave) will remain constant forever if 77 | = T} |, as usual;
and then decays to zero for the 4 Az wave (k Az = 7 in the Fig. 10).

Let now the upper panel of the Fig. 11 show Eq. 3.41 in the real
region. Indeed, the upper left panel shows that almost all physical low
wavelenghts are underdamping, except the F' = 0.5 case we have just
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discussed. Meanwhile, the upper right panel shows that virtually all
computational low wavelenghts give rise to numerical instabilities. So
the superposition of panels certainly results in the regimes shown in
complementary Fig. 9, as expected.

Du Fort — Frankel scheme Du Fort — Frankel scheme
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FIGURE 11. Upper: the relative amplitude error of the phys-
ical (left panel) and computational (right panel) modes us-
ing FF < 0.5 vs. frequency in radians, for specific F' values.
Lower: the relative amplitude error of the coalesced modes us-
ing F' > 0.5 vs. frequency in radians, for specific F' value.

In addition, regarding the behavior of the solution in the region not
discussed so far, then the numerical solution for each Fourier mode
becomes (their phase errors do exactly cancel)

[Cl + (_1)71 02] ’G(2)|n ei(bf) nAt eiijx’

17 = (3.43)
where the now growth factors are complex conjugates, thus having the

same modulus, |G5r2)] = \G(_2)| = |G|, and whose respective phases

. A/ s 2_
are given by ¢£|:2) = arctan <:t(22};:2:’f£21 and thus after each



682 G. Garrido, J.L.G. Pestana

time step, this time, phase is shifted for those wavenumbers which sat-
isfy 1 — (2 F sin (kAz))? < 0 (see Eq. 3.43). In other words, Gf) and

G(_Q) coalesce into one which corresponds to the inconsistency damped
mode, i.e. the wave that does propagate rather than becomes diffused.
Therefore, the Du Fort-Frankel stable scheme is qualitatively dissimilar
to the exact solution in this region.

In fact, in lower panel of the Fig. 10 the growth factor, |G|,
is plotted against the phase angle. Here, the damping in the complex
region is found to be an increasing function of Fourier number whereas
it is independent of frequency; which, although it avoids the Schmidt’s
instability, is a reason for divergence and we still wish to avoid it.

Let now the lower panel of the Fig. 11 show Eq. 3.41 in the case for
which the amplitude is a complex quantity. Although the numerical
solution is stable it never approaches to the analytic one because, as
we can observe, the low waves do not decay at all, contrarily to what
happens in the analytic solution (see the black line on the upper panel
of the Fig. 10); in excellent agreement with complementary Fig. 9.

3.5.5. Monotonicity. Finally, looking at Eq. 3.33 in Table 1 we see that the
coeflicients of the new solution are 1 +2F, 1 — 2 F and 2 F, i.e. all of them
are positive in the F' < 0.5 consistency region. Hence, the Du Fort-Frankel
scheme is conditionally monotone.

4. The numerical tests

The critical properties of the depending on time instantaneous grid func-
tion for a basic example and proxy for the presence of unsmooth initial con-
ditions are explored in this experimental section, as testbed for detailed fun-
damentals and practice quantitatively predicted in the previous Section. In
particular, equipped with a semi-analytical solution, we critically assess the
performance, in terms of stability, accuracy, and also convergence, of differ-
ent numerical solution schemes to solve the diffusion. Comparisons with each
other are finally commented.

More specifically, the illustrative application we use is the Fourier 1807
semi-analytical solution of the representative and challenging Cauchy problem
described in the A on bounded domain size L = 1, initial conditions Ty = 0,
boundary conditions 7. = 100 and diffusivity o = 0.5 arbitrary units (we will
omit these units in the rest of the paper for brevity), which deals with evolving
discontinuities in solution quantity. So, by choosing a mean best-fit resolution,
the full parameter space of every discretization model, summarized in Table 2,
is validated (or otherwise) and compared to exact solution and other numerical
solutions with special emphasis on graphical exposition.
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We remind that included in our sample is a no go condition using the
Richardson’s scheme and some problematic strictures with respect to the us-
age of both the Crank-Nicolson and the Du Fort-Frankel schemes, as well as
the inability to use a large time step in all cases (for the parabolic version
of the Courant-Friedrichs-Lewy condition in Schmidt’s case, accuracy in non-
explicit cases and consistency in Du Fort-Frankel case, respectively). In this
context and with all these central questions in mind, to gain a better under-
standing of different subtleties creating their signatures, before anything else,
we demonstrate how to perform frequentist scheme comparison.

4.1. Resolution tests. The present tests aim to constrain the At parameter
by performing a frequentist error minimization either opening or, in order to
resolve the initial condition well, keeping fixed a sufficiently small grid spacing
Az = 10" units.

To this end, Fig. 12 shows the residuals’ behavior obtained for the non
unstable schemes, namely, Schmidt’s, Du Fort-Frankel, Crank-Nicolson and
Laasonen’s schemes. Here, we use the simplest Schmidt’s scheme to compute
the lowest time level required by the Du Fort-Frankel three-level approxima-
tion. The codes naturally take into account the initial condition either in
the first iteration, in case of the first row explicit schemes, or in the constant
matrix, in other cases.

In doing so, we reveal five results of utmost importance. First, the stable
schemes produce higher error with the use of larger values of F'. This would
seem in apparent contradiction to unconditionally stable non-explicit schemes
at first glance.

Second, whilst using explicit schemes the error increases monotonically
at larger time step, with non-explicit schemes we minimize the error (which,
in contrast, we find to evolve with a constant value) using F' near around
0.25. These results are robust with the adoption of finer spatial resolution.
In addition, the residuals of the non-explicit schemes are remarkably positive
using smaller Fourier numbers.

Third, the schemes of order 1 in time, namely, Schmidt’s and Laasonen’s
schemes, are just as exact as the schemes of order 2 in time of the respective
same types, namely, Du Fort-Frankel and Crank-Nicolson schemes respec-
tively. This, again, seems very odd.

Fourth, in the explicit schemes there is a specific F' value, corresponding
to the black lines on the upper panels each, which interestingly does not follow
its respective trend.

Fifth, the Schmidt’s scheme starts to wildly oscillate for F = 0.5; and
moreover, surprisingly at first glance, it does it exactly the same way as Du
Fort-Frankel scheme does for the same value of F'. Furthermore, the Du Fort-
Frankel scheme still fluctuates considerably using F' values both larger and
smaller than about 0.25.
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Du Fort — Frankel scheme with Ax=0.1 at x=10.4

Schmidt scheme with Ax=10.1 at x=0.4
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FI1GURE 12. Errors of different methods for some values of the
dimensionless Fourier number, Eq. 3.2 (i.e. different discreti-
sations). We show both the Schmidt’s and Du Fort-Frankel F'
thresholds by their respective black line.

Here we offer the following five respective explanations.

e First, the solution to this puzzle is the mixture of short-wavelength
oscillations we already have quantified in Section 3 except for the Laa-
sonen’s case where the underdamped regimen is extremely large (see
Eq. 3.30). Indeed, this result is a consequence of the behavior illus-
trated in Figs. 3, 5, 7 and 11 each. In addition to this, even though the
diffusive heat transfer introduces natural damping to Godunov’s non-
physical oscillations and they thus do not significantly impact, in the
second order schemes (including Du Fort-Frankel scheme as given in
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Table 2) they, however, can leave observable remnants in the residuals,
and potentially explain part of this puzzle.

Second, there is a twofold explanation for this result. On the one hand,
the monotonic evolution of the Schmidt’s and Du fort-Frankel error is
the remarkable consequence of the opposite dissipative behaviors above
and below the critically damped regimen for each of these two schemes
(left panels in Figs. 3 and 11); which does not happen in Egs. 3.20
and 3.27.

On the other hand, the counterintuitive evolution of the two non-
explicit schemes we also find here has a number of surprising character-
istics. It is the consequence of the high specific frequency underdamp-
ing above F' near around 0.25 we can observe in the left panel both of
Fig. 5 and in Fig. 7. In fact, for this reason the residuals of the non-
explicit schemes are positive or opposite-sign using the smaller Fourier
numbers. Yet, although uncertainties in both schemes increase with
increasing F', the Crank-Nicolson oscillations are less accurate than
the Laasonen’s excessive underdamping; with these two effects being
responsible for the correlation, respectively.

Third, of note, all the schemes are second order accuracy because all
of them are second order in space (as given in second column of Table
2) and the order in space leads to the order in time under these values
of the discretization.

Fourth, all the schemes are fourth order dissipative algorithms. Nonethe-
less, we observe in either Table 2 or Egs. 3.11 and 3.35 that there are
two schemes where these terms cancel for a specific value of F' each,

namely, F' = % in the case of the Laasonen’s scheme and F = \/% in

the Du Fort-Frankel scheme; which makes them more exact.
Fifth, the still stable Schmidt’s scheme with F' = 0.5, Eq. 3.9, becomes
Ti”+1 = %(Tﬁl + T} 1); which obstructs the physical damping of our
Dirichlet boundary conditions since the two neighboring grid points
have the same temperature during the first time step. Moreover, the
Du Fort-Frankel scheme with F' = 0.5, Eq. 3.33, becomes exactly the
same.

Furthermore, concerning the Du Fort-Frankel consistency region Eq.
3.42 demonstrates the oscillations we found using F' < 0.5 while Eq.
3.43 does the same above the inconsistency threshold.

Consequently, based on this graphical statistical evidence and at the same

time with the awareness of both the Schmidt’s stability limitation and the Du
Fort-Frankel consistency limitation, we agree to carefully choose the simulta-
neous most accurate discretization of F' = 0.150 from visual inspection of Fig.
12, i.e. a time increment At = 3 x 1073 of almost two-and-a-half orders of
magnitude smaller than the acceptable spatial resolution of Az = 10~! units;
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under which all the schemes are second order accuracy. In fact, resolving
the abrupt initial and boundary conditions require time to reach described
accuracy, and potentially explains our choice. In other words, this subsec-
tion explains why the precision of the solution does not only depend on the
numerical resolution, but also on the temperature quantity gradient.

The advantage of this natural approach is that all schemes can be used
on an equal footing. The caveat is that individual peculiarities are averaged
out. Nonetheless, as previously anticipated, Fig. 12 illustrates that the sta-
bility benefit of the non-explicit schemes, consisting only in that we may use
(and save computing time with) a large At parameter, does not keep against
this difference equation. Here, we present the explanation that the non-explicit
schemes stabilize the high frequency stiff oscillations by so much anti-damping
which leads to the reduction of their accuracy rendering their viability ex-
tremely limited.

4.2. Stability tests. We are now able to extend that Section in three direc-
tions. We firstly demonstrate the stability of different schemes.

4.2.1. Unstable scheme. We compute the rod’s warming in the unit domain
[0, 1] using the Richardson’s approximation evolving its required first time
step solution from the simplest Schmidt scheme. We used the same option
to initialize the Du Fort-Frankel scheme, which likewise lacks its lowest time
level.

In proof of agreement with Section 3.1, the upper panel of Figure 13
shows certainly that the Richardson’s scheme amplifies errors and diverges
very rapidly. The onset of instability occurs before ¢ = 0.005 and then only
get worse. The size of the prediction error, measured in RMSE or standard
deviation of the residuals (lower panel of Fig. 13), is about two orders of
magnitude greater than acceptable even at this early stages. We also find that
it makes no difference with any other choice of the grid size. Therefore, we
cannot use the Richardson’s scheme to solve any parabolic partial differential
equation (see third paper in the series).

4.2.2. Conditionally stable, explicit scheme. In the upper left panel of
Figure 12 we cannot present the Schmidt’s solution using F' > 0.5, which
reveals its conditional stability, in agreement with Section 3.2.

4.2.3. Stable, explicit scheme. In the upper right panel of Figure 12 we
can present the Du Fort-Frankel solution using F' > 0.5, which reveals the
unconditional stability of this scheme. Even so, in practice we wish to avoid
this complex region, in accordance with Section 3.5.

4.2.4. Stable, non-explicit schemes. The lower panels of Fig. 12 reveal the
unconditional stability of both the Crank-Nicolson and Laasonen’s schemes;
in agreement with Sections 3.3 and 3.4, respectively.
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Richardson scheme with At=0.003,Ax=0.1

— t=0.005
80 . t=0.01
60 —— Analytical

. o Numerical

o 0=26.49
50 0=14622

—100

0.0 0.2 0.4 0.6 0.8 1.0
X

FIGURE 13. The Richardson (1910) method. Top panel: 790
(red open circles: o) and TP-%' (orange circles: ©) for the
Richardson method with Az = 107! and At = 1073. The
corresponding solid lines reproduce T'(x, 0.005) (violet) and
T(x,0.01) (blue) from Eq. A.2. Bottom panel shows resid-
ual temperatures for the mesh points. The legend in the lower
panel displays the Root Mean Squared Error, RMSE, for each
time.

4.3. Accuracy tests. We secondly demonstrate the accuracy of different
schemes. To achieve this, we present in Fig. 14 the results we obtain. For the
sake of easing comparisons, the left panels of Fig. 14 illustrate the tempera-
ture profiles at several selected times, and, on the other hand, the right panels
of Fig. 14 illustrate the time evolution of the temperature at two illuminating
locations.

By doing so, our investigation reveals four important results. First, it
looks like the Du Fort-Frankel right panel has twice as many residual curves
as the others.

Second, at the locations near the extremes of the rod the residuals are
both anomalously high/large and positive using the non-explicit schemes.

Third, the non-explicit schemes also reach 1" values greater than 7, in the
middle of the rod’s warming time.

Fourth, concerning the quantitative comparison of the performances of the
schemes, the Schmidt’s scheme is the most accurate scheme; followed by the
Du Fort-Frankel scheme.

Here we offer the following four respective explanations.

e First, this is what it looks like but it is the wave-optical effect created
due to the tiny time step. Given the tiny temporal discretization, odd
grid point residuals look like a different curve than the corresponding
to the even points. Indeed, the Du Fort-Frankel solution is oscillating
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FIGURE 14. The Schmidt, Du Fort-Frankel, Crank-Nicolson
and Laasonen schemes. Left panels: The same of Figure 13
but for 7205 (orange circles: o) and T (red circles: o). Right
panels: Ty (violet circles: o) and T§'s (blue circles: o) as a
evolving function of time until the end of the simulations; then
the solid curves reproduce 7'(0.2, t) (violet) and T(0.5, t) (blue)
from Eq. A.2, respectively.
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at neighboring nodes due to the sign flippins of the computational
mode; which is clearly seen at the Du Fort-Frankel left panel.
Second, this is exactly what we have just found in Fig. 12. The non-
explicit schemes becomes excessively under-damped, especially for the
low waves, i.e. tend to reduce high-frequency (i.e., oscillatory) com-
ponents of error rapidly but reduce low-frequency (i.e., smooth) com-
ponents of error much more slowly; which is going to produce poor
asymptotic rate of convergence. However, now in the right panels of
Fig. 14 we present the location x = 0.2 units where such counterin-
tuitive behavior is one order of magnitude greater than this shown in
Fig. 12. Anyway, what is happening is especial given the discontinu-
ous initial-boundary condition (see A) and also explains our next third
finding.

Third, given that the non-explicit schemes must be solved simultane-
ously then any irregularities of the data influence the entire solution
every time step and thus they quickly smooth out them, which is alto-
gether in good agreement with the natural damping of the dissipative
transfer by diffusion. That said, when the initial-boundary conditions
are discontinuous it is wiser to delay their influence as the explicit
schemes indeed do. In fact, the comparison among violet circles (for
shorter timescales) in the left panels of Fig. 14 provides the clearest
picture where the disagreement with analytical solution is exacerbated
in the nonexplicit schemes which evolved later. Likewise, the T, (vi-
olet circles in Fig. 14), T§, (let’s say green curves in Fig. 12) and
T§s (blue circles in Fig. 14) solutions for both Laasonen’s and Crank-
Nicolson schemes also show how the boundary influence decreases and
disappears as we move away from it.

Fourth, this result can be well explained by both the used initial data,
and the chosen discretization. Indeed, this is because the explicit
schemes are more suitable for our test case, and because of the Du
Fort-Frankel fluctuations. In fact, Section 3 allowed us to anticipate
the Crank-Nicolson oscillations, the Laasonen’s extremely low dissi-
pation and the Du Fort-Frankel numerical instabilities. We now show
that the Schmidt’s scheme not only is always better suited to our initial
value problem but it presents also neither spurious waves nor excessive
damping (attenuation) of the high resolution (low frequencies or large
wavelength) waves, resulting in a much more preferred scheme.

4.4. Convergence tests. Lastly, we explore the error convergence of different
schemes. In Section 2.2 we already have explained that consistency means that
the error at each time step goes to zero as the grid is refined and in Section
3 we have estimated the rate that this one-step error goes to zero. Here we
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investigate global (not local over one time step) rate of convergence, i.e. the
overall approximation error.

Before the task, we re-present in the right panel of Fig. 15 the RMSE errors
of both explicit and non-explicit, stable schemes presented as blue circles in
the right panels of Fig. 14; i.e. this right panel shows the errors in the
smooth time-evolution of the solution quantity derived for the middle of the
rod. As we have just discussed, it is unsurprising that the performance of
schemes varies greatly, and what this right panel shows is now understood.
At the same time, importantly, we re-present in the left panel of Fig. 15 the
RMSE errors of both explicit and non-explicit, stable schemes presented as
red circles in the left panels of Fig. 14; i.e. this left panel shows the errors in
the non-smooth middle of the time-evolution of the solution quantity derived
for all the locations. As we have just discussed, it is also understood that
the susceptibility of schemes to the initial conditions varies greatly, and this
left panel verifies that the implicit results have gotten much worse especially
where the influence of sufficiently large initial perturbations is much more
evident. Nevertheless, the diffusion differential equation naturally puts any
temperature irregularities right; i.e. it emends computational one-step errors.
Therefore we note that the order of accuracy is not compromised when we
compute the rate of convergence in the specific problem of diffusive transfer,
something which is not always guaranteed (see second paper in the series).

Ny

Ny
ZT!OS ZTSS
i=1 n=1

S DFF CN

DFF CN
scheme scheme

FiGURE 15. Bar plots with the RMSE errors. The left panel
corresponds to all positions 0.5 units after starting; while the
right panel corresponds to the central position of 0.5 units all
the time.

To investigate the matter further, in this paper we compute [>-norm data,
Eq. 2.4, based on the true error using the semi-analytical solution obtained in
A, for two resolutions whose ratio is 2 to indirectly infer the order of conver-
gence. The reason behind this is that the usage of explicit schemes in difference
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diffusion equations is too time-consuming to compute the rate of convergence.
That is true also even for the usage of implicit schemes in diffusion problems
(e.g., see Fig. 12). Thus, in exactly this way Fig. 16 shows that (when
the spatial resolution increases by a factor of 2) then I2-norm error decrease
by a factor of 4. Our analysis thereby confirm, using all schemes, that they
all actually are quadratic, something which is not before theoretically proven
herein.

Note this finding proves the Lax-Richtmyer theorem [23] for diffusion-like
equations, despite it only concerns well-posed problems; as a matter of fact,
the governing differential equation and not the difference schemes is its cause
(see second paper in the series).

Finally, although we have focused our study to understand and test both
accuracy of each one of the five low order finite difference schemes and the fact
that they always reach desired convergence rate as well as their stabilities, the
convergence studies carried out and showed in Fig. 16 (which agrees with
Fig. 15) also lead to better ability to discriminate between schemes. Besides
we find performance achieved with the Schmidt’s scheme to be comparable to
or better than performance with rest schemes in our sample, the Schmidt’s
scheme has the advantage of being more tractable numerically. In conclusion,
the Schmidt’s nonoscillatory scheme of finite difference method provides the
most successful description of diffusion equation of the A, and thus this result
should be taken into consideration during the integration of the full heat-like
equation subjected to some instabilities (which we shall discuss, e.g., in third
paper in the series). Nonetheless, before doing this work, in the second paper
in the series we have to explore under which circumstances such effectiveness
holds in the transfer or transport by advection.

5. Concluding remarks

The overarching goal of this first expository work in our series paper is
to enable the reader to completely grasp the finite difference approach to
the diffusive transport while making the advanced development on the topic
and beyond accesible. To achieve this goal, we select and discuss a complete
and unbiased sample of schemes for the diffusion parabolic partial differential
equation constituted by all those up to second-order in both time and space;
which are of topical current interest. We also put to precisely test such sample
considering the Fourier problem in the presence of initial discontinuous pertur-
bations; which appear in a wide variety of physical contexts. In other words,
different schemes include both single-step and three-time-level, both explicit or
hierarchical and non-explicit or monolithic, both consistent and inconsistent,
both stable and unstable, both first-order accuracy and second-order accuracy,
and both convergent and divergent; while each scheme includes discretizations
which obviously are both reliable or robust and inaccurate or uncertain. In
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(A) The conditionally stable, Schmidt (B) The conditionally consistent Du Fort-
method Frankel method

Crank — Nicolson scheme with Ax =0.1 and Ax =0.05 Laasonen scheme with Ax=0.1 and Ax =0.05
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(c) The unconditionally stable Crank- (D) The unconditionally stable Laasonen
Nicolson method method

F1GURE 16. Convergence of the error plot for the heating from
its ends. The black line is the 2-norm data as a function of time
using the resolution Az = 0.05 multiplied by 4.

fact, we perform a complete study of each behavior and its implication on the
error estimation of each scheme. Moreover, we empirically validate as well as
illustrate all of this phenomenology by computation.

To be more precise, the classical Richardson’s [15], Schmidt’s [16], Crank-
Nicolson [19], Laasonen’s [21] and Du Fort-Frankel [22] schemes for a diffusion
type transport equation have been coherently revised at low and (which is a
vital aspect to capture the correct behavior of the system in the regions where
the space scale is very small) high wavenumbers by exploiting the power of
both the reverse Taylor’s analysis [7] and the discrete Fourier’s analysis [8],
even though these associated formalisms are not physically equivalent. In
fact, this distinction is important because we demonstrate these high mode
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wavenumbers (smallest scales) always remain poorly constrained. At the same
time, the Courant-Friedrichs-Lewy-type condition have been interpreted as
the transition to stiffness. For more clarity, we homogeneously test all the
schemes on an equal spatiotemporal discretization by performing an a priori
minimization best-fit. In fact, we highlight the benefits of this framework. In
addition, we use all of them to probe the Lax-Richtmyer theorem [23] and
also the Godunov’s theorem [9], despite we find the latter has in practice no
significant effect on diffusive transport. Our main conclusions are summarized

below.

(1)

The pioneering Richardson’s numerical scheme for approximating the
solution to diffusion linear equation is a one step three time level
scheme which unfortunately presents a unstable computational mode,
and therefore is invalid for diffusive transfer in general. We even pro-
vide numerical simulations of a test case based on this scheme.

The simplest Schmidt’s numerical scheme for diffusion differential equa-
tion can be too prohibitive because its tight stability region and we
highlight its critically damped solution, at approximately F = 1/6,
dividing overdamped from underdamped or stiff regimes in a linear
stability analysis; with the limit of the latter explaining the Courant-
Friedrichs-Lewy-type condition at F' = 1/2. Such processes, generally
speaking, can be only observed in explicit solutions of diffusion-like
equations. This scheme also is the preferred approximation when ap-
ply it to a discontinuous initial-value problem for the linear diffusion
equation.

The innovative Crank-Nicolson numerical scheme for the diffusion equa-
tion presents only one underdamped regime, explaining its stability.
Nevertheless, we show that Crank-Nicolson solution exhibits a promi-
nent limitation, namely, it also presents low-wavelength spatial oscil-
lations with increasing F. Such effects, generally speaking, can be
only observed in non-explicit solutions of diffusion-like equations. Be-
sides, because starting from the discontinuous initial-boundary con-
ditions the monolithic approximation based on this scheme evolves
slowly, the discontinuous initial-value problem investigated disfavours
this scheme, whereas the hierarchical approximations are very consis-
tent with the exact solution.

The curious Laasonen’s numerical scheme also presents only one regime,
which is excessively underdamped for the differential equation ana-
lyzed. Indeed, as a non-explicit scheme, it has no underdamped regi-
men but suffers from low numerical efficiency. Compared to the Crank-
Nicolson scheme, its slowly evolving early solution around the leap at
endpoints of the domain is still disfavoured.
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(5) The fascinating Du Fort-Frankel numerical scheme for diffusion presents
a stable computational mode, a critically damped regimen at approx-
imately F' = 1/1/12 and a surprising consistency region. In fact, we
show that at the limit of its stiff regime, F' = 1/2, the exceptional,
unobservable (imaginary) computational mode recovers the stability
but leads to incorrect solutions. Compared to the Schmidt’s scheme
we hence show that its wider stability region is not advantageous be-
cause its consistency region, though its performance is still a reliable
approximation for the numerical resolution and for the test problem
this paper investigates.

This has however been a challenging project which contains numerous
different scenarios. Indeed, the focus of the present historical review is in un-
familiar variety of physical effects and numerical artifacts only little explored
in the original literature rather than not necessarily desirable high accuracy
or data systematics. Overall, our findings, we believe, should help researchers
entering the field, while contributing to the ongoing efforts to refine our quan-
titative interpretation of the second order spatial derivative. We expect the
fourth paper of this series to have a non-linear, stronger mathematical for-
mulation and finally touch briefly whether the scheme destroys the inherent
physical structure of the underlying problem or not (referred to as the conser-
vation properties). In second and third papers of the series we shall continue
working the theory of difference schemes with the physical help of the Fourier
decomposition and the equivalent mathematical clarity of the theory of differ-
ential equations.
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Appendix A. The Fourier’s 1807 semi-analytical solution to the
Fourier’s 1807 problem as a test case

In this paper we choose as an academic test-case study for diffusion the
classical one dimensional initial boundary value problem on an interval in R,
first formulated by Fourier [24] in 1807 in an unpublished monograph (influ-
enced by Laplace). Specifically, an insulated rod of length given is suddenly
heated from its ends, which is modeled as symmetric Dirichlet boundary con-
ditions, i.e.,

o =027 z€(0,L),t>0,
T(x, 0) =Ty x € (0, L), (A.1)

T00,t)=T.=T(L,t) t>0.
That is, the boundary temperature jumps from 0 to Ty at t = 0. All the
other surfaces of the rod are insulated such that a one dimensional model is
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appropriate. Heat cannot escape, and since we supply heat at = = 0, all of the
material will eventually be warmed up to the temperature Tj, i.e. this heat
spreads out spatially as time increases. In fact, the Fourier heat equation not
only governs heat flow, but all sorts of diffusion processes where some quantity
flows from regions of higher to lower concentration (e.g., mass diffusion). What
is more, considerations of boundary conditions play a key role in the empirical
equivalence (or otherwise) of numerical solutions.

This benchmark problem, prototype of parabolic differential equation,
guarantees the suitability of the formulation of the semi-analytical solution
in trigonometric series [24]. In particular, by using the method of separation
of variables, looking for the solution in the full Fourier series form and applying
the boundary conditions, then we obtain:

T(x,t) = To+2(Ty ~T.) Y ! _T(L;l) sin (”Zx)e—a(m/ Lt (A2)

n=1
which certainly is a series of Fourier modes that will be dissipated. Addi-
tionally, we represent this tree-dimensional semi-analytical function in Figure
17 to graphically visualize the details of the rod’s warming which have to be
simulated by the numerical solutions.

(A) 3D Plot of T'(x,t) (B) Contour plot of T'(z,t)

FI1GURE 17. Representation of the semi-analytical temperature
distribution given by Eq. A.2. The pseudo-colours indicate the
temperature values. The contour lines are drawn at specific
intervals of 10 units.

In second and third papers of the series another favorable initial pertur-
bations will also be addressed.
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