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1. Introduction

The Chaudhry-Ahmad (CA) distribution is a two-parameter continuous
probability distribution defined on the positive real line was introduced by [7].
Its probability density function (PDF) is

fX(x;α, λ) = 2

√
α

π
exp

[
−α

(
x− λ2

x

)2
]
, x > 0, α, λ > 0. (1)

The CA distribution can be obtained as the root reciprocal of the inverse-
Gaussian (IG) distribution, that is, the distribution of the random variable
(RV) X = 1√

W
where W follows the IG distribution with PDF

fW (w;µ, ν) =

√
ν

2π
w−3/2 exp

[
−ν(w − µ)2

2µ2w

]
, w > 0, µ, ν > 0 (2)

where µ = λ−2 and ν = 2α.
Recently, [11] presented basic properties of the CA distribution and fitted

it to wind speed data from six weather stations distributed in the state of
Tocantins in Brazil.

To extend its range of applications to data on the whole real line, for
example, weather temperatures, stock returns and DNA microarray data, we
introduce a double Chaudhry-Ahmad (DCA) distribution defined on the whole
real line.

We follow the procedure presented by [3] to construct a DCA distribution
using the random sign mixture transform (RSMT) given by

Z = Y X1 − (1− Y )X2, (3)

where Y is a Bernoulli random variable (RV) with parameter β, X1 and X2

are non-negative RVs independent of Y. If X1 and X2 are independent and
identically distributed (IID), we have what is called random sign transform
(RST).

If X1, X2 are independent RVs from the sme family of distributions F ,
then the distribution of Z is said to have double F distribution.

In the literature, many authors use the word double as the distribution of
the absolute value and some of them use the word reflection. For example,
[4] and [8] presented the double Weibull distribution. [9] studied the reflected
version of the exponential distribution. The reflected version of the generalized
Gamma was studied by [12]. In fact, these double distributions are the dis-
tributions of the RST when Y has a Bernoulli distribution with pararameter
β = 0.5.

Recently, [2] and [1] introduced double inverse-Gaussian and double log-
normal distributions, respectively, using RSMT. These papers also reviewed
previous publications in the literature using the RST/RSMT approach.
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In our construction of the DCA distribution using RSMT given by equa-
tion (3), it is assumed that Y is a Bernoulli RV with parameter β, X1 and X2

are CA RVs independent of Y.

The contents of this paper are organized as follows. The main statistical
properties of the DCA distribution are presented in Section 2. Section 3
gives explicit MLEs and their asymptotic distributions. Simulation studies
are carried out to study the performance of the MLEs in Section 4. In Section
5, the proposed DCA distribution is fitted to a DNA microarray data set and
compared with other recent published bimodal double distributions. Finally,
conclusions and comments are presented in Section 6.

2. Statistical properties

In this section, we present the main statistical properties of the DCA
distribution.

2.1. Probability density function. The PDF of DCA distribution is

fZ(z) =

{
β fX2(|z|;α2, λ2), z < 0,

β fX1(z;α1, λ1), z ≥ 0,
(4)

where, for αj , λj > 0, j = 1, 2,

fXj (x;αj , λj) = 2

√
αj

π
exp

−αj

(
x−

λ2
j

x

)2
 , x > 0, (5)

are the PDFs of the CA distributions.
The DCA distribution has two modes given by

Mode(Z) = − Mode(X2) and Mode(X1), (6)

where, for j = 1, 2,

Mode(Xj) = λj , (7)

are the modes of the CA distributions.

2.2. Cumulative distribution function. The cumulative distribution func-
tion (CDF) of DCA distribution is is given by

FZ(z) = P (Z ≤ z) =

{
β [1− FX2(|z|;α2, λ2)] , z < 0,

β + β FX1(z;α1, λ1), z ≥ 0,
(8)
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where, for j = 1, 2,

FXj (x;αj , λj) = P (Xj ≤ x)

= Φ

(√
2αj

(
x−

λ2
j

x

))

−e4αjλ
2
j Φ

(
−
√

2αj

(
x+

λ2
j

x

))
, x > 0, (9)

are the CDFs of the CA distributions and

Φ(a) = P (Z ≤ a) =

∫ a

−∞

1√
2π

e−z2/2 dz, a ∈ R, (10)

is the CDF of the standard normal distribution.

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

z

P
D
F

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

z

C
D
F

Figure 1. PDF and CDF of DCA distribu-
tion: (β, α1, λ1, α2, λ2) : (0.3, 0.5, 1, 1, 0.5)( ),
(0.5, 0.5, 1, 1, 0.5)( ), (0.8, 0.5, 1, 1, 0.5)( ).

Figure 1 shows the the PDF and CDF of the DCA distribution for selected
values of the parameters.

2.3. Moments and associated measures. The rth raw moment of DCA
distribution is given by

E(Zr) = β E(Xr
1) + (−1)r β E(Xr

2), r ≥ 1, (11)

where, for j = 1, 2,

E(Xr
j ) =

∫ ∞

0
xr fXj (x;αj , λj)dx

= 2

√
αj

π
λr+1
j e2αjλ

2
j K r+1

2
(2αjλ

2
j ), (12)

are the rth moments of the CA distributions and

Kν(c) =
1

2

( c
2

)ν ∫ ∞

0

1

tν+1
exp

[
−t− c2

4t

]
dt, c > 0, ν ∈ R,
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is the modified Bessel function of the second kind.
The mean, variance, skewness and kurtosis of DCA distribution can be

obtained using these raw moments.
Figure 2 shows the mean, variance, skewness, and kurtosis of the DCA dis-

tribution as a function in β for selected values of the parameters (α1, λ1, α2, λ2).
Also, this figure shows that the skewness can be negative/positive, i.e. the
DCA distribution can be skewed to the left/right.

0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

β

M
ea
n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

β

V
ar
ia
nc
e

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

β

S
ke
w
ne
ss

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

β

K
ur
to
si
s

Figure 2. Mean, variance, skewness and kurtosis of
DCA distribution as a function in β: (α1, λ1, α2, λ2) :
(0.5, 1, 1, 0.5)( ), (1, 0.5, 0.5, 1)( ), (0.5, 1, 0.5, 1)( ).

2.4. Harmonic mean. The harmonic mean of a RV V , is defined asHM(V ) =
1

E[1/V ] , provided E[1/V ] exists.

Lemma 2.1. The harmonic mean of DCA distribution is given by

HM(Z) =
1

β
HM(X1)

− β
HM(X2)

(13)

where

HM(Xj) =
1

2
√

αj

π e2αjλ2
j K0(2αjλ2

j )
, j = 1, 2, (14)
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are the harmonic means of the CA distributions.

P r o o f. Equation (13) is given in [1]. For a RV Xj ∼ CA(αj , λj) distri-
bution, we have

1

HM(Xj)
=

∫ ∞

0

1

x
fXj (x, αj , λj)dx

= 2

√
αj

π
e2αλ

2
j K0(2αjλ

2
j ).

This completes the proof of the lemma. 2
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Figure 3. Harmonic mean of DCA distribution as a function
in β: (α1, λ1, α2, λ2) : (0.5, 1, 1, 0.5)( ), (1, 0.5, 0.5, 1)( ),
(0.5, 1, 0.5, 1)( ).

Figure 3 shows the harmonic mean of the DCA distribution as a function
in β for selected values of the parameters.

2.5. Entropies. Entropies are measures of a system’s variation, instability,
or uncertainty.

For a RV V with PDF fV (v), the following are two well known entropies:

1. Tsallis entropy: (see [15])

Ts(V ) =
1

s− 1
{1− E[fs−1

V (V )]}, 0 < s ̸= 1.

2. Shannon entropy: (see [14])

H(V ) = E[− ln fV (V )]} = lim
s→1

Ts(V ).
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Lemma 2.2. Tsallis entropy of DCA distribution is given by

Ts(Z) = Ts(Y ) + βs Ts(X1) + β
s
Ts(X2), (15)

where

Ts(Y ) =
1− βs − β

s

s− 1
, (16)

is Tsallis entropy of Bernoulli distribution and

Ts(Xj) =
1

s− 1

{
1− 1√

s

(
2

√
αj

π

)s−1
}
, j = 1, 2, (17)

are Tsallis entropies of CA distributions.

P r o o f. Equations (15) and (16) are given in [2]. For a RV Xj ∼
CA(αj , λj) distribution, we have

1− (s− 1)Ts(Xj) =

∫ ∞

0
fs
X(x;αj , λj)dx

=

∫ ∞

0
2s
(αj

π

)s/2
exp

−s αj

(
x−

λ2
j

x

)2
 dx

=
1√
s

(
2

√
αj

π

)s−1

.

This completes the proof of the lemma. 2

Lemma 2.3. Shannon entropy of DCA distribution is given by

H(Z) = H(Y ) + β H(X1) + β H(X2), (18)

where

H(Y ) = −β ln(β)− β ln(β), (19)

is Shannon entropy of Bernoulli distribution and

H(Xj) =
1

2
− ln

(
2

√
αj

π

)
, j = 1, 2, (20)

are Shannon entropies of CA distributions.
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P r o o f. Equations (18) and (19) are given in [3]. For a RV Xj ∼
CA(αj , λj) distribution, using L’Hôpital’s rule, we have

H(Xj) = lim
s→1

Ts(Xj)

= lim
s→1

−
(
2

√
αj

π

)s−1 {
1√
s
ln

(
2

√
αj

π

)
− 1

2s3/2

}
=

1

2
− ln

(
2

√
αj

π

)
.

This completes the proof of the lemma. 2

Figure 4 shows Tsallis and Shannon entropies of DCA distribution as a
function in β for selected values of the parameters. This figure also shows that
Tsallis and Shannon entropies of DCA distribution can be negative/positive.
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Figure 4. Tsallis and Shannon entropies of DCA distribu-
tion as a function in β: (α1, λ1, α2, λ2) : (0.5, λ1, 2, λ2)( ),
(2, λ1, 0.5, λ2)( ), (5, λ1, 5, λ2)( ), for all λ1, λ2 > 0.

2.6. Extropies. Recently, alternative measures of uncertainty, called extropy
and weighted extropy, are proposed in the literature.

For a RV V with PDF fV (v), the following are two well known extropies:

1. Extropy: (see [10])

J(V ) = −1

2
E[fV (V )]} =

1

2
[T2(V )− 1].

2. Weighted extropy: (see [5])

Jw(V ) = −1

2
E[V fV (V )]}.

The authors of [5] gave example of two RVs having the same extropy but
different weighted extropy.
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Lemma 2.4. The extropy of DCA distribution is given by

J(Z) = β2 J(X1) + β
2
J(X2), (21)

where, for j = 1, 2,

J(Xj) = −
√

αj

2π
, (22)

are extropies of CA distributions.

P r o o f. Equations (21) is given in [2]. For a RV Xj ∼ CA(αj , λj) dis-
tribution, we have

J(Xj) =
1

2
[T2(Xj)− 1] = −

√
αj

2π
.

This completes the proof of the lemma. 2

Lemma 2.5. The weigted extropy of DCA distribution is given by

Jw(Z) = β2 Jw(X1)− β
2
Jw(X2), (23)

where, for j = 1, 2,

Jw(Xj) = − 2

π
αjλ

2
j e4αjλ

2
j K1(4αjλ

2
j ), (24)

are the weighted extropies of CA distributions.

P r o o f. Since

Jw(Z) = −1

2

∫ ∞

−∞
z f2

Z(z)dz

= −1

2

{
β2

∫ ∞

0
z f2

X1
(z)dz + β

2
∫ 0

−∞
z f2

X2
(|z|)dz

}
= −1

2

{
β2

∫ ∞

0
z f2

X1
(z)dz − β

2
∫ ∞

0
x f2

X2
(x)dx

}
= β2 Jw(X1)− β

2
Jw(X2),

equation (23) follows. For a RV Xj ∼ CA(αj , λj) distribution, we have

Jw(Xj) = −1

2

∫ ∞

0
x f2

Xj
(x;αj , λj)dx

= − 2

π
αjλ

2
j e4αjλ

2
j K1(4αjλ

2
j ).

This completes the proof of the lemma. 2
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Figure 5. Extropy of DCA distribution as a function in
β: (α1, λ1, α2, λ2) : (0.5, λ1, 2, λ2)( ), (2, λ1, 0.5, λ2)( ),
(5, λ1, 5, λ2)( ), for all λ1, λ2 > 0.
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Figure 6. Weighted extropy of DCA distribution as a function
in β: (α1, λ1, α2, λ2) : (0.5, 2, 2, 0.5)( ), (2, 0.5, 0.5, 1)( ),
(5, 1, 5, 1)( ).

Figure 2.6 shows the extropy of DCA distribution as a function in β for
selected values of the parameters. This figure also shows that the extropy of
DCA distribution is always negative. On the other hand, Figure 2.6 shows
that the weighted extropy of DCA distribution can be positive/negative.
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3. Maximum likelihood estimation

In this section, we derive the MLEs of the parameters of DCA distribution
and their asymptotic distributions.

Let z1, z2, . . . , zn be a random sample from DCA(β, α1, λ1, α2, λ2) distri-
bution.The log-likelihood function is given by

lnL(β, α1, λ1, α2, λ2) =
n∑

i=1

ln[β fX1(zi;α1, λ1)] ⊮{zi>0}

+
n∑

i=1

ln[β fX2(|zi|;α2, λ2)] ⊮{zi<0}, (25)

where ⊮A = 1(0) if A is true (false) is the indicator function.
The MLEs of the parameters (β, α1, λ1, α2, λ2) are:

β̂ = n1/n, (26)

α̂1 = a1/ (2(a1b1 − 1)) , λ̂1 = 1/
√
a1, (27)

α̂2 = a2/ (2(a2b2 − 1)) , λ̂2 = 1/
√
a2 (28)

where

n1 =
n∑

i=1

⊮(zi>0), n2 =
n∑

i=1

⊮(zi<0), n1 + n2 = n, (29)

a1 =
1

n1

n∑
i=1

z−2
i ⊮(zi>0), b1 =

1

n1

n∑
i=1

z2i ⊮(zi>0), (30)

a2 =
1

n2

n∑
i=1

z−2
i ⊮(zi<0), b2 =

1

n2

n∑
i=1

z2i ⊮(zi<0). (31)

The Fisher information matrix about (β, α1, λ1, α2, λ2) is given by

I(β, α1, λ1, α2, λ2) = diag
(
IY (β), β IX1(α1, λ1), β IX2(α2, λ2)

)
, (32)

where IY (β) =
1

β β
is the Fisher information about β and, for j = 1, 2,

IXj (αj , λj) = diag

(
1

2α2
j

, 8αj

)
, (33)

are the Fisher information matrices about (αj , λj), j = 1, 2.
Moreover, the asymptotic distribution of the MLEs is given by:
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As n → ∞,

√
n


β̂ − β
α̂1 − α1

λ̂1 − λ1

α̂2 − α2

λ̂2 − λ2

 d−→ MVN
(
0, I−1(β, α1, λ1, α2, λ2)

)
(34)

where
d−→ denotes convergence in distribution, MVN stands for multivariate

normal distribution and

I−1(β, α1, λ1, α2, λ2) = diag

(
β β,

2α2
1

β
,

1

8α1β
,
2α2

2

β
,

1

8α2β

)
. (35)

4. Simulation study

The purpose of this section is to perform simulation study to evaluate the
finite-sample behaviour of the MLEs of the parameters of the proposed DCA
distribution. The simulation study was done using the R language [13]. Such
study was repeated M = 10, 000 times. In each of the M repetitions, a ran-
dom sample of size n = 50, 100, . . . , 500 is drawn from DCA distribution with
true parameters (β, α1, λ1, α2, λ2) = (0.35, 2, 1, 1, 2), (0.5, 1, 2, 2, 1), (0.7,
0.5, 1, 1, 0.5), using the following algorithm:

1. Generate Yi ∼ Bernoulli(β), i = 1, 2, . . . , n;
2. Generate W1,i ∼ IG(λ−2

1 , 2α1), i = 1, 2, . . . , n;
3. Set X1,i =

1√
W1,i

, i = 1, 2, . . . , n;

4. Generate W2,i ∼ IG(λ−2
2 , 2α2), i = 1, 2, . . . , n;

5. Set X2,i =
1√
W2,i

, i = 1, 2, . . . , n;

6. Set Zi = Yi X1,i − (1− Yi) X2,i, i = 1, 2, . . . , n.

The behaviours of the MLEs of the parameters of the proposed DCA
distribution are evaluated in terms of the following measures:

1. (Average) Bias of the MLEs:

Bias(θ̂) =
1

M

M∑
j=1

(θ̂j − θ), θ = β, α1, λ1, α2, λ2,

where θ̂j is the MLE of θ in the jth simulation repetition.
2. Mean square error (MSE) of the MLEs:

MSE(θ̂) =
1

M

M∑
j=1

(θ̂j − θ)2.
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3. Coverage probability (CP) of the 95% confidence interval of each pa-
rameter:

CP (θ) =
1

M

M∑
j=1

⊮{θ̂j−1.96 S.E.(θ̂j) <θ< θ̂j+1.96 S.E.(θ̂j)}.
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Figure 7. Bias of the MLEs of the parameters of
DCA distribution: (β, α1, λ1, α2, λ2) : (0.35, 2, 1, 1, 2)( ),
(0.5, 1, 2, 2, 1)( ), (0.7, 0.5, 1, 1, 0.5)( ).
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Figure 8. MSE of the MLEs of the parameters of
DCA distribution: (β, α1, λ1, α2, λ2) : (0.35, 2, 1, 1, 2)( ),
(0.5, 1, 2, 2, 1)( ), (0.7, 0.5, 1, 1, 0.5)( ).
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Figure 9. CP of the 95% confidence intervals of the
parameters of DCA distribution: (β, α1, λ1, α2, λ2) :
(0.35, 2, 1, 1, 2)( ), (0.5, 1, 2, 2, 1)( ),
(0.7, 0.5, 1, 1, 0.5)( ).
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The results of the simulation study are reported in Figures 7–9. These
results are summarized below.

(1) Figure 7 shows that the absolute biases of the MLEs of the parameters
are small and tend to zero for large n.

(2) Figure 8, shows that the MSE of the MLEs of the parameters are small
and decrease as n increases.

(3) Figure 9 shows that the coverage probability of 95% confidence interval
of each parameter is close to the nominal level of 95%.

The above conclusions show that the MLEs of the parameters of the DCA
distribution are well behaved for point estimation and confidence intervals.

5. Application

Here, we fit the proposed DCA distribution to a real data set from DNA
microarray reported by [6]. The considered data, labelled as “SID 377353,
ESTs [5’:, 3’:AA055048]”, consists of 118 observations.

Some descriptive statistics of the DNA microarray data are summarized
in Table 1. Note that the skewness value is negative, indicating that the data
is left-skewed.

Table 1. Descriptive statistics of DNA microarray data.

Min. Q1 Median Q3 Max. Mean St. dev.

-0.3390 -0.1138 0.0130 0.0780 0.2840 -0.0133 0.1293

For comparing the proposed DCA distribution with other bimodal double
distributions, we consider double inverse-Gaussion (DIG) distribution intro-
duced by [2] and double log-normal (DLN) distribution introduced by [1].

(i) The PDF of the DIG distribution is

fZ(z) =

{
β fX2(|z|; ν2, λ2), z < 0,

β fX1(z; ν1, λ1), z ≥ 0,

where, β = 1− β, 0 < β < 1, νj , λj > 0, j = 1, 2,

fXj (x; νj , λj) =

√
λj

2π
x−3/2 exp

[
−λj (x− νj)

2

2ν2j x

]
, x > 0, (36)

are the PDFs of the IG distributions.
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(ii) The PDF of the DLN distribution is

fZ(z) =

{
β fX2(|z|;µ2, σ2), z < 0,

β fX1(z;µ1, σ1), z ≥ 0,

where, β = 1− β, 0 < β < 1, µj ∈ R, σj > 0, j = 1, 2,

fXj (x;µj , σj) =
1√

2π σj x
exp

[
−(ln(x)− µj)

2

2σ2
j

]
, x > 0, (37)

are the PDFs of LN distributions.

Table 2 gives the MLEs, their standard errors (S.E.), estimated log-likelihoods,
Akaike information criterion (AIC) and Bayesian information criterion (BIC)
of the fitted DIG, DLN and DCA distributions.

Table 2. Summary of the three fitted models for DNA microarray data.

Model Parameter MLE S.E. ln L̂ AIC BIC

DIG β 0.542 0.046 39.249 -68.499 -54.645
ν1 0.087 0.017
λ1 0.036 0.006
ν2 0.132 0.018
λ2 0.126 0.024

DLN β 0.542 0.046 64.829 -119.659 -105.805
µ1 -2.812 0.127
σ1 1.016 0.090
µ2 -2.224 0.104
σ2 0.764 0.074

DCA β 0.542 0.046 78.573 -147.146 -133.293
α1 42.771 7.561
λ1 0.008 0.007
α2 22.866 4.401
λ2 0.028 0.010
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Figure 10. Histogram and theoretical densities of the three
fitted models.

Table 3 gives the Kolmogrov-Smirnov (KS), Anderson-Darling (AD) and
Cramér-von Mises (CVM) goodness-of-fit tests of the considered three models.

Table 3. Goodness-of-fit tests of fitted models

KS AD CVM
Model statistic p-value statistic p-value statistic p-value

DIG 0.126 0.046 3.285 0.020 0.545 0.030
DLN 0.065 0.709 0.851 0.446 0.103 0.570
DCA 0.078 0.468 0.594 0.653 0.109 0.543
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Figure 11. Empirical and theoretical CDFs of the three fitted models.
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Figure 12. P-P plots of the three fitted models.
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Figure 13. Q-Q plots of the three fitted models.
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Remarks.

(1) DCA model has the smallest AIC and smallest BIC, see Table 2.
(2) DCA and DLN models (DIG model) are not rejected (is rejected) by

all three goodness-of-fit tests, see Table 3.
(3) DCA model has the best performance in four diagnostic plots, namely

(i) Histogram and theoretical densities, (ii) Empirical and theoretical
CDFs, (iii) Percentile-Percentile (P-P), and (iv) Quantile-Quantile (Q-
Q), see Figures 10 - 13.

Based on the last remarks, we conclude that DCA model is the most
suitable for modeling the considered data.

6. Conclusion and comments

We proposed a new bimodal distribution on the real line, referred to as
the double Chaudhry-Ahmad distribution. We derived several properties of
the proposed distribution including density function, cumulative distribution
function, moments, harmonic mean, Tsallis and Shannon entropies, extropy
and weighted extropy. The model parameters were estimated by maximum
likelihood approach. Monte Carlo simulation results indicate satisfactory per-
formance of the maximum likelihood estimates. The proposed distribution is
applied to a real set from DNA microarray data and is compared with recently
introduced double inverse-Gaussian and double lognormal distributions. The
proposed model can be extended by adding location and scale parameters to
obtain more flexibility for modeling bimodal data on the whole real line.
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