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Abstract

In this work, we are using the special case of Mittag-Leffler functions,
namely, H and T Nested Functions Tpj and Hpj . We study some properties
and identities of these functions. Then, we derive new results about the gen-
eralizations of Wilker and Huygen’s type inequalities based on Tpj and Hpj ,
with improving some recent inequalities.
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1. Introduction

Many studies have been conducted in the field of Mittag-Leffler functions
due to their applications in the study of integral equations, fractional calcu-
lus and recently, in the field of inequalities. Especially, many authors have
developed new results about the trigonometric inequalities based on Mittag-
Leffler functions (see e.g. [14]). In recent years, trigonometric inequalities and
hyperbolic inequalities have attracted the attention of many researchers and
interesting results have been obtained (see [3]-[22]). Here, we can mention
some well-known trigonometric inequalities, which are known as Wilker’s in-
equality, Huygen’s inequality and Cusa’s inequality (see [3], [5] and [7]) pointed
out in this context and are shown here, respectively:(

sin(x)

x

)2

+
tan(x)

x
> 2 (0 < |x| < π

2
), (1)

2

(
sin(x)

x

)
+

tan(x)

x
> 3 (0 < |x| < π

2
), (2)

sin(x)

x
<

2

3
+

1

3
cos(x) (0 < |x| < π

2
). (3)

A lot of research have been done to develop these trigonometric inequalities
into other functions, such as lemniscate functions, Bessel functions, hyperbolic
functions, exponential functions and weighted functions.

We can refer to the following inequalities based on hyperbolic functions
from the article [21], which are respectively known as Wilker’s first type in-
equality, Wilker’s second type inequality, Cusa type inequality and Huygen’s
type inequality: (

sinh(x)

x

)2

+
tanh(x)

x
> 2 (x ̸= 0), (4)(

x

sinh(x)

)2

+
x

tanh(x)
> 2 (x ̸= 0), (5)(

sinh(x)

x

)
− 1

3
cosh(x) <

2

3
(x ̸= 0), (6)

2

(
sinh(x)

x

)
+

tanh(x)

x
> 3 (x ̸= 0). (7)

This paper consists of three main sections. In Section 2, we introduce
some important inequalities, including Wilker’s and Huygens’ inequalities. In
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Section 3, we examine the functions of Hpj and Tpj based on Mittage-Leffler
functions. We will study them and prove some of their properties. In Section
4, we introduce the generalized nested function Hapj and Tapj . We give some
properties of these functions. Then, we present new generalizations of the
well-known Wilker and Huygen’s type inequalities and prove them.

We give a generalization of Wilker’s inequality for hyperbolic functions
[16].

We continue this section by stating the following lemmas and theorem that
are important to prove some upcoming results in the next sections.

Lemma 1.1. For each x ̸= 0 the following inequalities hold:

tanh(x)

x
< 1,

Tp1(x)

x
> 1.

Theorem 1.1. [16] For each x ̸= 0 and n ≥ 1, the following inequality
holds: (

sinh(x)

x

)n

+
n

2

tanh(x)

x
>

n+ 2

2
.

Lemma 1.2. Let x and y be positive real numbers. Then,

i. (Mitrinovic et al. [11]) For µ ∈ [0, 1],

µx+ (1− µ) ≥ xµy1−µ.

ii. (Issa and Ibrahimov [8]) For x ≥ y and µ ∈
[
1
2 , 1

]
,

µx+ (1− µ) ≥ x1−µyµ + (2µ− 1) (x− y) ≥ xµy1−µ.

iii. (Issa and Ibrahimov [8]) For x ≥ y and µ ∈
[
1
2 ,

3
4

]
,

µx+ (1− µ) ≥ xµ−
1
2 y

3
2
−µ +

(x− y)

2
≥ xµy1−µ.

2. On some properties of H and T nested functions

In this section, as the special case of Mittag-Leffler functions, we consider
H and T Nested Functions Tpj and Hpj in order to prove some results about
the generalizations of Wilker and Huygens type inequalities.

We begin this section by definition of Tpj and Hpj and give some properties
of these special functions, that are in fact particular cases of the Mittag-Leffler
functions and of the higher order trigonometric (cosine and sine) functions (see
for example, [9]).
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Definition 2.1. [1] H and T Nested Functions Tpj , Hpj : R → R, j =
0, 1, 2, · · · , p− 1, p ∈ N, are defined as follows:

Tpj(t) =

∞∑
n=0

(−1)ntpn+j

(pn+ j)!
, Hpj(t) =

∞∑
n=0

tpn+j

(pn+ j)!
.

Theorem 2.1. [1] For each t ∈ R, we have

T
′
p0(t) = −Tpp−1(t), H

′
p0(t) = Hpp−1(t),

T
′
p1(t) = Tp0(t), H

′
p1(t) = Hp0(t),

...
...

T
′
pp−1(t) = Tpp−2(t), H

′
pp−1(t) = Hpp−2(t).

Theorem 2.2. [2] Let λp = 1, λ ̸= 1, wp = −1 and w ̸= −1, then, we
have

Hp0(t) =

∑p−1
j=0 e

λjt

p
, Tp0(t) =

∑p−1
j=0 e

wjt

p
, j = 0, 1, ..., p− 1,

Hp1(t) =

∑p−1
j=0 λ

p−jeλ
jt

p
, Tp1(t) =

∑p−1
j=0 w

p−jew
jt

p
, j = 0, 1, ..., p− 1,

...
...

Hpp−1(t) =

∑p−1
j=0 λ

jeλ
jt

p
, Tpp−1(t) =

∑p−1
j=0 w

jew
jt

p
, j = 0, 1, ..., p− 1.

Example 2.1. [2] For p = 3, λ3 = 1 and λ ̸= 1,we have

H30(t) =
et + eλt + eλ

2t

3
,

H31(t) =
et + λ2eλt + λeλ

2t

3
,

H32(t) =
et + λeλt + λ2eλ

2t

3
.
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Example 2.2. [2] For p = 3, w3 = −1 and w ̸= −1, we have

T30(t) =
e−t + ewt + e−w2t

3
,

T31(t) =
−e−t − w2ewt + we−w2t

3
,

T32(t) =
e−t − wewt + w2e−w2t

3
.

Theorem 2.3. [2] For each x ∈ R, we have the following identities:

T 3
30(x)− T 3

31(x) + T 3
32(x) + 3T30(x)T31(x)T32(x) = 1,

H3
30(x) +H3

31(x) +H3
32(x)− 3H30(x)H31(x)H32(x) = 1.

Definition 2.2. [16] The functions p tanij , p tanhij : R → R, i, j =
0, 1, 2, · · · , p− 1, p ∈ N, i ̸= j are defined as follows:

p tanij(t) =
Tpi(t)

Tpj(t)
, p tanhij(t) =

Hpi(t)

Hpj(t)
,

=⇒

p tan10(t) =
Tp1(t)

Tp0(t)
, p tanh10(t) =

Hp1(t)

Hp0(t)
.

Remark 2.1. By Theorem 2.2 in [16], for p = 3, we have

3 tan10(t) =
H31(t)

H30(t)
=

et + λ2eλt + λeλ
2t

et + eλt + eλ2t
,

3 tanh21(t) =
H32(t)

H31(t)
=

et + λeλt + λ2eλ
2t

et + λ2eλt + λeλ2t
,

3 tanh02(t) =
H30(t)

H32(t)
=

et + eλt + eλ
2t

et + λeλt + λ2eλ2t
.

Lemma 2.1. [16] For each x ̸= 0, the following inequalities hold:

p tan10(x)

x
< 1 and (here x are limited)

Tp1(x)

x
> 1,

p tanh10(x)

x
< 1 and

Hp1(x)

x
> 1.

Lemma 2.2. [16] For each x ̸= 0, the following inequalities hold:

(
Hp1(x)

x
)p+1 > Hp0(x), for p ≥ 2.
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Lemma 2.3. [16] For each x ̸= 0, the following inequalities hold:

p

(
Hp1(x)

x

)
+

p tanh10(x)

x
> p+ 1 (x ̸= 0),

p

(
Tp1(x)

x

)
+

p tan10(x)

x
> p+ 1 (x ̸= 0). (Open problem)

Theorem 2.4. [16] For each x ̸= 0 and n ≥ 1, the following inequality
holds: (

Hp1(x)

x

)n

+
n

p
p tanh10(x)

x
>

n+ p

p
.

Theorem 2.5. [16] Let x > 0, a > 0, b > 0, p ≥ 2, p ∈ N and m ≥ pnb/a.
Then, for n > 0 , the following inequality holds:

a

a+ b
(
Hp1(x)

x
)m +

b

a+ b
(
p tanh10(x)

x
)n > 1 .

Lemma 2.4. [16] For each x ̸= 0, the following inequalities hold:

Hpi(x)

xi
> 1, i = 0, 1, 2, · · · , p− 1.

and

p tanhi0(x)

xi
< 1, i = 0, 1, 2, · · · , p− 1.

Lemma 2.5. [16] For each x ̸= 0, the following inequalities hold:

(
Hpi(x)

xi
)p+i > Hp0(x), for p ≥ 2, i = 0, 1, 2, · · · , p− 1.

Lemma 2.6. [16] For each x ̸= 0, the following inequalities hold:

p

(
Hpi(x)

xi

)
+ i

p tanhi0(x)

xi
> p+ i (x ̸= 0),

p

(
Tpi(x)

xi

)
+ i

p tani0(x)

xi
> p+ i. (x ̸= 0) (Open problem)

Theorem 2.6. [16] For each x ̸= 0, i = 1, 2, ..., p − 1 and n ≥ 1, the
following inequality holds:(

Hpi(x)

xi

)n

+
in

p
p tanhi0(x)

xi
>

in+ p

p
.
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Theorem 2.7. [16] Let x > 0, a > 0, b > 0, p ≥ 2, p ∈ N, i = 1, 2, ..., p− 1
and m ≥ (p+ i− 1)nb/a. Then, for n > 0 , the following inequality holds:

a

a+ b
(
Hpi(x)

xi
)m +

b

a+ b
(
p tanhi0(x)

xi
)n > 1 .

Lemma 2.7. [16] Let x > 0, the following inequality holds:(
Hp1(x)

x

)p

− p

p+ 1
Hp0(x) >

1

p+ 1
.

Lemma 2.8. [16] Let x > 0, the following inequality holds:

p

p+ 1
[1−Hp0(x)]

[
1− Hp1(x)

x

]
+

[
Hp1(x)

x
− Hp0(x)

p+ 1
− p

p+ 1

]
> 0 .

3. Generalized nested functions and generalizations of
Wilker-Huygen’s inequalities

In this section, inspired by the work of Kwara [12], using generalizedH and
T nested functions, we prove new results about the generalization of Wilker’s
and Huygen’s type inequalities.

Definition 3.1. The generalized H and T nested functions Tapj , Hapj :
R → R, a > 0 , a ̸= 1, j = 0, 1, 2, · · · , p− 1, p ∈ N, are defined as follows:

Tapj(t) =

∞∑
n=0

(−1)n(t ln a)pn+j

(pn+ j)!
= Tpj(t ln a),

Hapj(t) =

∞∑
n=0

(t ln a)pn+j

(pn+ j)!
= Hpj(t ln a).

Theorem 3.1. For each t ∈ R, we have

T
′
ap0(t) = − ln aTapp−1(t) H

′
ap0(t) = ln aHapp−1(t),

T
′
ap1(t) = ln aTap0(t) H

′
ap1(t) = ln aHap0(t),

...
...

T
′
app−1(t) = ln aTapp−2(t) H

′
app−1(t) = ln aHapp−2(t).

By Theorem 2.2 and Definition 3.1, we have the following theorem.
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Theorem 3.2. Let λp = 1, λ ̸= 1, wp = −1, w ̸= −1, a > 0 and a ̸= 1.
Then, we have

Hap0(t) =

∑p−1
j=0 a

λjt

p
, Tap0(t) =

∑p−1
j=0 a

wjt

p
, j = 0, 1, ..., p− 1,

Hap1(t) =

∑p−1
j=0 λ

p−jaλ
jt

p
, Tap1(t) =

∑p−1
j=0 w

p−jaw
jt

p
, j = 0, 1, ..., p− 1,

...
...

Hap−1(t) =

∑p−1
j=0 λ

jaλ
jt

p
, Tapp−1(t) =

∑p−1
j=0 w

jaw
jt

p
, j = 0, 1, ..., p− 1.

Example 3.1. For p = 3, we have

Ha30(t) =
at + aλt + aλ

2t

3
,

Ha31(t) =
at + λ2aλt + λaλ

2t

3
,

Ha32(t) =
at + λaλt + λ2aλ

2t

3
.

And

Ta30(t) =
a−t + awt + a−w2t

3
,

Ta31(t) =
−a−t − w2awt + wa−w2t

3
,

Ta32(t) =
a−t − wawt + w2a−w2t

3
.

By using Theorem 2.3 and Definition 3.1, we have the following theorem.

Theorem 3.3. For each x ∈ R, we have the following identities.

H3
a30(x) +H3

a31(x) +H3
a32(x)− 3Ha30(x)Ha31(x)Ha32(x) = 1,

T 3
a30(x)− T 3

a31(x) + T 3
a32(x) + 3Ta30(x)Ta31(x)Ta32(x) = 1.
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Definition 3.2. The functions p tanij ,p tanhij : R → R, i, j = 0, 1, 2, · · · ,
p− 1, p ∈ N, i ̸= j are defined as follows:

p tanij(t) =
Tapi(t)

Tapj(t)
, p tanhij(t) =

Hapi(t)

Hapj(t)
,

=⇒

p tan10(t) =
Tap1(t)

Tap0(t)
, p tanh10(t) =

Hap1(t)

Hap0(t)
.

Lemma 3.1. For each x ̸= 0, the following inequalities hold:

(
Hap1(x)

x
)p+1 > lnp+1 aHp0(x), for a > 1, p ≥ 2.

P r o o f. By Definition 3.1 and Lemma 2.2, we have

(
Hap1(x)

x
)p+1 = (

Hp1(x ln a)

x
)p+1 = lnp+1 a(

Hp1(x ln a)

x ln a
)p+1

= lnp+1 a(
Hp1(t)

t
)p+1 > lnp+1 aHp0(x).

2

Corollary 3.1. For each x ̸= 0, the following inequalities hold:

(
Hap1(x)

x
)p+1 > Hap0(x), for a > e, p ≥ 2.

Remark 3.1. For each a > 1, the inequalities of Theorem 3.11 in [13] are
not true. For example, if we choice a = 11

10 , z = 5, we have:

(
(1110)

5 − (1110)
−5

10
)3 ∼= 0.00096,

(1110)
5 + (1110)

−5

10
∼= 1.11571,

=⇒

(
(1110)

5 − (1110)
−5

10
)3 <

(1110)
5 + (1110)

−5

10
.

Theorem 3.4. [6] (Monotone form of L’Hôpital’s rule). Let f, g
be continuous functions defined in [a, b], differentiable in (a, b). Suppose that
f(a) = g(a) = 0 or f(b) = g(b) = 0, and assume that g′(x) ̸= 0 for all
x ∈ (a, b). If f ′/g′ is increasing (decreasing) on (a, b), then so is f/g.

Remark 3.2. By considering Theorem 3.4 and Remark 3.1, condition
f(a) = g(a) = 0 or f(b) = g(b) = 0 is essential to apply Theorem 3.4.
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Lemma 3.2. For each x ̸= 0, the following inequalities hold:

p

(
Hap1(x)

x

)
+

p tanha10(x)

x
> (p+ 1) ln a (a > 1, x ̸= 0),

p

(
Tap1(x)

x

)
+

p tana10(x)

x
> (p+ 1) ln a (a > 1, x ̸= 0)

(Open problem).

P r o o f. By Definition 3.1 and Lemma 2.3, we have

p

(
Hap1(x)

x

)
+

p tanha10(x)

x
= p

(
Hp1(x ln a)

x

)
+

p tanh(x ln a)

x

= ln a[p

(
Hp1(x ln a)

x ln a

)
+

p tanh(x ln a)

x ln a
]

= ln a[p

(
Hp1(t)

t

)
+

p tanh(t)

t
] > (p+ 1) ln a.

2

Corollary 3.2. For each x ̸= 0, the following inequalities hold:

p

(
Hap1(x)

x

)
+

p tanha10(x)

x
> p+ 1 (a > e, x ̸= 0),

p

(
Tap1(x)

x

)
+

p tana10(x)

x
> p+1 (a > e, x ̸= 0) (Open problem).

Theorem 3.5. For each x ̸= 0 and n ≥ 1, the following inequality holds:(
Hap1(x)

x

)n

+
n

p
p tanha10(x)

x
lnn−1 a >

n+ p

p
lnn a (a > e, x ̸= 0) .

P r o o f. By Definition 3.1 and Lemma 2.4, we have(
Hap1(x)

x

)n

+
n

p
p tanha10(x)

x
lnn−1 a = lnn a

(
Hp1(x ln a)

x lnn a

)n

+

n

p

[
p tanh10(x ln a)

x ln a

]
lnn a = lnn a[

(
Hp1(x)

x

)n

+
n

p
p tanh10(x)

x
]

>
n+ p

p
ln a.

2
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Lemma 3.3. For each x ̸= 0, the following inequalities hold:

p

(
Hapi(x)

xi

)
+ i

p tanhai0(x)

xi
> (p+ i) lni a (x ̸= 0),

p

(
Tapi(x)

xi

)
+ i

p tanai0(x)

xi
> (p+ i) lni a (x ̸= 0) (Open problem).

P r o o f. By Definition 3.1 and Lemma 2.6, we have(
Hap1(x)

xi

)
+ i

p tanha10(x)

xi
= lni a

(
Hp1(x ln a)

xi lni a

)

+i

[
p tanh10(x ln a)

(x ln a)i

]
lni a = lni a[

(
Hp1(t)

ti

)
+ i

p tanh10(t)

ti
]

> (p+ i) lni a.

2

Theorem 3.6. For each x ̸= 0, i = 1, 2, ..., p − 1 and n ≥ 1 , following
inequality holds:(

Hapi(x)

xi

)n

+
in

p
p tanhai0(x)

xi
lnin−i a > (

in+ p

p
) lnin a .

P r o o f. By Definition 3.1 and Lemma 2.6, we have(
Hapi(x)

xi

)n

+
in

p
p tanhai0(x)

xi
lnin−i a

lnin a[

(
Hp1(x ln a)

xi lni a

)n

+
in

p
p tanh10(x ln a)

xi lni a
]

= lnni a[

(
Hp1(t)

ti

)n

+
in

p
p tanh10(t)

ti
] > (

in+ p

p
) lnni a.

2

We are inspired by [10] for the following theorem, and we will improve the
inequality in Theorem 5.1 in [10].

Theorem 3.7. Let x > 0, α > 0, β > 0, p ≥ 2, p ∈ N, and m ≥ pnβ/α.
Then, for n > 0 , the following inequality holds:

α

α+ β
(
Hap1(x)

x
)m +

β

α+ β
(
p tanha10(x)

x
)n > (ln a)

mα+nβ
α+β .
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P r o o f. By Definition 3.1, Lemma 1.2 and Lemma 2.2, we have

α

α+ β
(
Hap1(x)

x
)m +

β

α+ β
(
p tanha10(x)

x
)n

≥ (
Hap1(x)

x
)

mα
α+β (

p tanha10(x)

x
)

nβ
α+β

= (
Hp1(x ln a)

x ln a
)

mα
α+β (

Hp1(x ln a)

x ln a
)

nβ
α+β (

1

Hp0(x ln a)
)

nβ
α+β (ln a)

mα+nβ
α+β

> (
Hap1(t)

t
)

mα
α+β (

Hap1(t)

t
)

nβ
α+β (

Hap1(t)

t
)
−n(p+1)β

α+β (ln a)
mα+nβ
α+β

= (
Hap1(x)

x
)
mα−npβ

α+β (ln a)
mα+nβ
α+β > (ln a)

mα+nβ
α+β .

2

With choice p = 2, we have the following corollary.

Corollary 3.3. Let x > 0, α > 0, β > 0, and m ≥ 2nβ/α. Then, for
n > 0, the following inequality holds:

α

α+ β
(
Ha21(x)

x
)m +

β

α+ β
(
2 tanha10(x)

x
)n > (ln a)

mα+nβ
α+β .

Remark 3.3. For proof of Theorem 5.1 in [10], we see that

sFkh(x) =
σx
k − σ−x

k√
k2 + 4

=
2√

k2 + 4
sinh(x lnσk),

cFkh(x) =
σx
k + σ−x

k√
k2 + 4

=
2√

k2 + 4
cosh(x lnσk),

tFkh(x) =
sFkh(x)

cFkh(x)
= tanh(x lnσk).

Therefore, by Lemma 1.2 and Lemma 2.5, with p = 2, we have

α

α+ β
(
sFkh(x)

x
)m +

β

α+ β
(
tFkh(x)

x
)n
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=
α

α+ β
(
2 lnσk√
k2 + 4

sinh(x lnσk)

x lnσk
)m

+
β

α+ β
(lnσk

tanh(x lnσk)

x lnσk
)n

≥ (
2 lnσk√
k2 + 4

sinh(x lnσk)

x lnσk
)

mα
α+β (lnσk

tanh(x lnσk)

x lnσk
)

nβ
α+β

= (
sinh(t)

t
)

mα
α+β (

sinh(t)

t
)

nβ
α+β (

1

cosh(t)
)

nβ
α+β (lnσk)

mα+nβ
α+β

× (
2√

k2 + 4
)

mα
α+β

> (
sinh(t)

t
)

mα
α+β (

sinh(t)

t
)

nβ
α+β (

sinh(t)

t
)
−3nβ
α+β (lnσk)

mα+nβ
α+β

× (
2√

k2 + 4
)

mα
α+β

= (
sinh(t)

t
)
mα−2nβ

α+β (lnσk)
mα+nβ
α+β (

2√
k2 + 4

)
mα
α+β

> (lnσk)
mα+nβ
α+β (

2√
k2 + 4

)
mα
α+β .

So,

α

α+ β
(
sFkh(x)

x
)m +

β

α+ β
(
tFkh(x)

x
)n > (lnσk)

mα+nβ
α+β (

2√
k2 + 4

)
mα
α+β . (8)

Thus, according to mα
α+β < mα+nβ

α+β and 1 > 2√
k2+4

, we obtain

(lnσk)
mα+nβ
α+β (

2√
k2 + 4

)
mα
α+β > (lnσk)

mα+nβ
α+β (

2√
k2 + 4

)
mα+nβ
α+β .

Hence, the proof is completed.
Note that, inequality in (8) is stronger than the inequality of Theorem 5.1

in [10].

Theorem 3.8. [10] For nonzero real number x and any positive real
number k, the following inequality holds:

(
sFkh(x)

x
)2 + (

tFkh(x)

x
) >

8 ln2 σk
(k2 + 4)

+
32 ln5 σk
45(k2 + 4)

x3tFkh(x) .

Remark 3.4. In proof of Theorem 4.1 in [10], the author did not care
about the condition f(a) = g(a) = 0 or f(b) = g(b) = 0.

Theorem 3.9. For nonzero real number x and any positive real number
k, the following inequality holds:
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(
sFkh(x)

x
)2 + (

tFkh(x)

x
)

>
4 ln2 σk
(k2 + 4)

+
4 ln4 σk
3(k2 + 4)

x2 +
8 ln6 σk

45(k2 + 4)
x4 +

ln8 σk
336(k2 + 4)

x6.

P r o o f. Note that ( 0 < tanh(t)
t < 1),

(
sFkh(x)

x
)2 +

tFkh(x)

x
= (

2 lnσk√
k2 + 4

sinh(x lnσk)

x lnσk
)2

+ lnσk
tanh(x lnσk)

x lnσk

(
2 lnσk√
k2 + 4

)2(
sinh(t)

t
)2 + lnσk

tanh(t)

t

> (
2 lnσk√
k2 + 4

)2(1 +
t2

6
+

t4

120
+

t6

5040
)2 + lnσk

tanh(t)

t

> (
2 lnσk√
k2 + 4

)2(1 +
t2

3
+

2t4

45
+

t6

336
)2

> (
2 lnσk√
k2 + 4

)2 + (
2 lnσk√
k2 + 4

)2
t2

3
+ (

2 lnσk√
k2 + 4

)2
2t4

45

+(
2 lnσk√
k2 + 4

)2
t6

336

= m
4 ln2 σk
(k2 + 4)

+
4 ln4 σk
3(k2 + 4)

x2 +
8 ln6 σk

45(k2 + 4)
x4 +

ln8 σk
336(k2 + 4)

x6.

2

Lemma 3.4. For each x ̸= 0, the following inequality holds:

(
Hapi(x)

xi
)p+i > (ln a)i(p+i)Hap0(x), for p ≥ 2, i = 0, 1, 2, · · · , p− 1.

P r o o f.

(
Hapi(x)

(x)i
)p+i = (ln a)i(p+i) (

Hpi(x ln a)

(x ln a)i
)p+i

= (ln a)i(p+i) (
Hpi(t)

(t)i
)p+i > (ln a)i(p+i)Hp0(t)

= (ln a)i(p+i)Hp0(x ln a) = (ln a)i(p+i)Hap0(x).

2
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Theorem 3.10. [16] Let x > 0, α > 0, β > 0, p ≥ 2, p ∈ N, i = 1, 2, ..., p−
1 and m ≥ (p+ i− 1)nβ/α. Then, for n > 0 , the following inequality holds:

α

α+ β
(
Hpi(x)

xi
)m +

β

α+ β
(
p tanhi0(x)

xi
)n > (ln a)

imα+nβ
α+β .

P r o o f. By Definition 3.1, Lemma 1.2 and Lemma 2.5, we have

α

α+ β
(
Hpi(x)

xi
)m +

β

α+ β
(
p tanhi0(x)

xi
)n

≥ (
Hpi(x)

xi
)

mα
α+β (

p tanhi0(x)

xi
)

nβ
α+β

= (
Hpi(x ln a)

(x ln a)i
)

mα
α+β (

Hpi(x ln a)

(x ln a)i
)

nβ
α+β (

1

Hp0(x ln a)
)

nβ
α+β (ln a)

imα+nβ
α+β

> (
Hap1(t)

ti
)

mα
α+β (

Hap1(t)

ti
)

nβ
α+β (

Hapi(t)

ti
)
−n(p+i)β

α+β (ln a)
imα+nβ

α+β

= (
Hapi(t)

ti
)
mα−(p+i−1)nβ

α+β (ln a)
imα+nβ

α+β > (ln a)
imα+nβ

α+β .

2

4. Conclusion

In this paper, we introduced some important inequalities, includingWilker’s
and Huygen’s inequalities. Then, we studied some properties of Hpj and
Tpj based on Mittag-Leffler functions. Finally, we introduced the general-
ized nested function Hapj and Tapj . Some properties of these functions are
shown. Then, we presented new generalizations of the well-known Wilker and
Huygen’s type inequalities and proved them. Also, we improved and corrected
very recently inequality.
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