IJAM: Volume 37, No. 5 (2024)

DOI: 10.12732/ijam.v37i5.5

 

ON UNIFORM STRUCTURES IN

THE SPACE OF n - PERMUTATION DEGREE

 

Farkhod G. Mukhamadiev 1,§,  Rustam M. Zhuraev 2

 

1,2  National University of Uzbekistan

Tashkent - 100174, UZBEKISTAN

 

 

Abstract.  In this paper, we consider uniform structures in the space of n – permutation degree SP{^n_G}X. Also, we obtain some results related to the uniform spaces and of the space of n - permutation degree. It is proved that weight of uniform space to be equal to weight of the space of n - permutation degree of this uniform spaces.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i5.5
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 5

References

 

[1] R.B. Beshimov, D.N. Georgiou, F. Sereti, R.M. Zhuraev, Metric, stratifiable and uniform spaces of G.permutation degree, Mathematica Slovaca, 74, No 1 (2024), 235-248.

[2] A.A. Borubaev, D.T. Eshkobilova, The functor of idempotent probability measures and maps with uniformity properties of uniform spaces, Eurasian Mathematical Journal, 12, No 3 (2021), 29-41.

[3] R.B. Beshimov, D.T. Safarova, Uniformly linked space and its hyperspace, In: AIP Conference Proceedings, 3004, No 1 (2024), Art. ID 020003.

[4] A.A. Borubaev, Uniform Topology, Ilim, Bishkek, 2013.

[5] V.V. Fedorchuk, Covariant functors in the category of compacta absolute retracts and Q-manifolds, Uspehi Mat. Nauk 3, No 36 (1981), 177-195.

[6] V.V. Fedorchuk and V.V. Filippov, Topology of Hyperspaces and Its Applications,

Ser. Mathematica, Cybernetica, 4, p.48. Moscow, 1989.

[7] R.B. Beshimov, D.N. Georgiou and R.M. Zhuraev, Index boundedness and

uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol., 22, No 2 (2021), 447-459.

[8] Lj.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms, 11, No 6 (2022), Art. ID 290, 9 pp.

[9] Lj.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, Tightness-type properties of the space of permutation degree, Mathematics, 10, No 18 (2022), 3341, 7 pp.

[10] Lj.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36, No 20 (2022), 7059-7066.

[11] Lj.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, Sh.U. Meyliev, Some network-type properties of the space of G-permutation degree, App. Gen. Topol., 24, No 1 (2023), 229-237.

[12] Lj.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, Some classes of topological spaces and the space of G-permutation degree, Georgian Mathematical Journal, 31, No 2 (2024), 285-291.

[13] Lj.D.R. Kocinac, F.G. Mukhamadiev, A.K. Sadullaev, On the space of G-permutation degree of some classes of topological spaces, Mathematics, 11, 4624 (2023); https://doi.org/10.3390/math11224624.

[14] R. Engelking, General Topology, Sigma Ser. in Pure Mathematics, Vol. 6 (Revised ed.) Heldermann Verlag, Berlin, 1989.

 

·                  IJAM

o                Home

o                Contents

o                Editorial Board

 (c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/