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1. Introduction

The classical braid group B,, on n strings is the abstract group with gen-

erators: o1,09,...,0,_1 and a presentation as follows:
0i0i+10; = 0i410i0;+1, 1= 1,2,...,n— 2,
005 = 04504, |Z*]|22

B, has a normal subgroup called the pure braid group and is denoted by
P,. The pure braid group is the kernel of the surjective map v : B, — Sy,
defined by o; — a4, where S, is the symmetric group on n elements, with

generators: ai,as,...,q,_1 and a presentation as follows:
o? =1, i=1,2,...,n—2,
OGO 410G = QG410 0G4 1, 1= 1, 2, ceey,— 2,
OziOéj = CYjOéi, ’Z — ]‘ Z 2.

One of the famous representations of the group B, is the Burau repre-
sentation [3]. Let z € C*, the reduced Burau representation (3,(z) : B, —
GL,_1(C) is defined by specializing t + z in B, : By, — GL,_1(Z[tT]), where
t is an indeterminate [4]. Other linear representations of the braid group were
constructed, where the question of irreducibility has been the focus of many
studies [1].

A generalization of the braid group is the group of conjugating automor-
phisms C,,, a subgroup of Aut(F},), where F),, =
< x1, T9,..., Ty > is the free group of rank n. For all § € C,, B(z;) =
fi_lx,r(i)fi, where 7 € S, and f; € F,. In addition, if S(zize...x,) =
x1Z2 ... Ty then f € B,. By theorem of Artin [9], we define a faithful repre-
sentation of the braid group B, in Aut(F),).

Furthermore, C),, has a normal subgroup called the group of basis conju-
gating automorphisms and denoted by Cb,. Note that Cb,, satisfies for all
B € Cby, B(x;) = f;lxi fi- According to [2] , the structure of Cb,, is similar
to the structure of P,. Also, the quotient groups B, /P, and C,,/Cb,, are iso-
morphic to S,. Moreover, the generators of C,, are those of the braid group
with those of the symmetric group (see Definition .

Let F = [F,, F,] be the commutator subgroup of F,, and A, = F,/F}.
The extension of Burau representation on C,, is obtained by restricting

p: TA(F,) = GL,(Z[6 5, . 6, FY)

to Cb, and by putting t; = ... = t, = t, where TA(F,,) is the kernel of the
epimorphism Aut(F,) — Aut(A,) and t,...,t, are indeterminate variables
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(see [3] and [2]).

In this paper, we prove that every irreducible representation of S, of non
trivial dimension, having the image of the generator a; under this representa-
tion a pseudoreflection, is equivalent to the restrictions of the extension of the
reduced Burau representation to S, namely ¢p /8, (2), for n. >5 (Proposition
. We also get a similar proposition, for n > 7, without requiring the image
of a generator of S,, to be a pseudoreflection (Proposition . Our first result
is Theorem [3.7} which classifies all irreducible complex representations of C,,
of dimensions r, when 2 < r < n—3 and n > 5. Our second result is Theorem
which classifies representations p : Cy, — GL,—1(C), where n > 7 and
both of the restrictions of p to S, and B,, are irreducible.

2. Preliminaries and notations

Let C" denote the r x 1 vectors, and C" denote the 1 x 7 vectors. We
say that a matrix Z € M,(C) is a pseudoreflection if the rank of Z — I is
1. If Z is a pseudoreflection then there exist X € C" and Y € C” such that
Z =1—XY. The eigenvalues of Z are 1 (with multiplicity » — 1) and 1 - Y X
(with multiplicity 1). Note that Z is invertible if and only if Y X # 1.

DEFINITION 2.1. [4] Let z € C*. The complex specialization of the re-
duced Burau representation 3,(z) : B, = GL,_1(C) is defined on the gener-
ators o; of By, 1 <1i < n—1, by pseudoreflections /3,,(2)(0;) = I — P;Q;, where

0
L 0 E } ol
-1 . 0
=01 P.= (:),Pi: _11 for1<i<mn-—2
0 : } n—i—2
0
and
Q=" -10 ... 0 ),Qu1=(11 ... 1 14271,
i—1 n—i—2

—
Qi=0 ... 0 2t =10 ... 0) for1<i<n-2.
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The associated matrix (Q;F;) is

241 =zt 0 0 0
-1 7l —z1 0 0
0 -1 2141 :
(QiP)) = _
0 0 0 U "
0 0 0 -1 2741

DEFINITION 2.2. ([]) Let z be a root of f,1(t) =" +t" "1 ... +t+1,
where n > 3. Then the extension of 3,(z) to By41, namely B,11(2) : Bpt1 —
GL,_1 is the irreducible representation defined by S,,11(z)(0;) = Bn(2)(0;) for

0

1<i<n—1,and Bhy1(2)(0n) = I — PQ, where P =
1

and Q = (—1)"22(1, —(1+2), (1+2+22),..., ()" 2(142+...4272)).

LeMMA 2.1. ([4]) The specialization of the reduced Burau representation
Bn(2) : By, — GL,_1(C) is either irreducible if z € C* is not a root of f,(t) =
t" 1 4"+ ... 4+t+1, or has an irreducible composition factor Bn(z) of degree
n—2 if z € C* is a root of fp(t) and n > 4.

The standard representation was first discovered in 1996 by D. Tong and
others [12, Eq.(19)]. I. Sysoeva used the complex specialization of the standard
representation to classify the irreducible representations of the braid group of
degree n.

DEFINITION 2.3. [I0] Let u € C*. A specialization of the standard
representation is the representation

Tn(u) : By, — GL,(C)
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defined by
Iiy
o) (0) = i
In_1-;
for 1 <i<n—1, where I is the k x k identity matrix. This representation
is irreducible if and only if u # 1.

LEMMA 2.2. ([10, Theorem 6.1]) Suppose that p : B,, — GLy,(C) is an
irreducible representation of By, of degree n > 9. Then it is equivalent to the
tensor product of a one-dimensional representation and a specialization of the
standard representation.

DEFINITION 2.4. [4] A representation of the braid group B, — GL,(C)
is of Burau type if r > 2 and it is equivalent to an irreducible representation
which is the tensor product of a one dimensional representation and /3, (z) or

We now introduce the group of conjugating automorphisms C,, as an ab-
stract group with generators and relations.

DEFINITION 2.5. [8] The group of conjugating automorphisms, denoted
by Cp, is generated by {o1,09,...,0n—1,01,Q2,...,Qn_1}, where 04,1 < i <
n — 1, generate the braid group B, and «;,1 < ¢ < n — 1, generate the
symmetric group S, with the defining relations:

0;0) = 04, Zf |7, - j| > 2,
OiQj+10G = Q4105+,
004104 = Qj4+10i05+1,
oio; =004, if |i—j|>2,
0i0{4104 = 0i+10i0i+1,
a? =1,
Q0 = Qg Zf |Z —j| > 2,

Q0410 = Q1 QG Q4]

THEOREM 2.1. (6, Theorem 6]) The extension of Burau representation
on C, of degree n is reducible.
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DEFINITION 2.6. ([6]) Let z € C* and let ¢p(z) : Cp — GLp_1(C) be
the specialization of the extension of the reduced Burau representation on C,,
defined as follows:

65(2)(0:) = Bu(2)(03) and ¢p(2)(es) =1 — RiS;, 1<i<n—1,

where
0
-1 0 }i_l
1 _ 0
Ri=| 0| Ryi= (:),Ri: _11 for 1<i<n-—2,
: 0
0 1 } .
n—i—2
0
and
Si1=(-110 ... 0 ),81=(11 ... 1 2), and
i—1 n—i—2
o N— —— .
Si=0 ... 0 =110 ... 0), for 1<i<n-—2.

2 =1 0 0 0
1 2 -1 0 0
0 -1 2

(SiR;) =
0 0 0 2 -1
0 0 0 1 2

THEOREM 2.2. ([6]) For z € C*, the representation ¢g(z) : C, —
GL,,—1(C) is irreducible.

3. Classification of irreducible representations of the group of
conjugating automorphisms C,, of degree at most n — 3

E. Formanek has classified all irreducible representations of B,, of which
the generators are given by pseudoreflections. It is well known that C,, is
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generated by {o1,...,0np-1} and {aq,...,an—_1}, the generators of B,, and S,
respectively. It is then natural to classify all those irreducible representations
of the group of conjugating automorphisms C,, — GL,(C), where 2 < r <
n + 1. In our work, we consider r such that 2 < r < n — 3 and classify all
irreducible representations of C), of degree r. First, we state some previous
results of E. Formanek and R. Rasala.

THEOREM 3.1. ([4, Theorem 10]) Let p : B, — GL,(C) be an irreducible
representation, where n > 5 and r > 2. Suppose p(o1) is a pseudoreflection.
Then one of the following is satisfied.

(i) p is equivalent to B, (z) : By, — GL,—1(C), where z € C* is not a root of
fo@®) =t 2441,
(i) p is equivalent to B,(z) : By, — GL,_5(C), where z € C* is a root of f,(t).

The next theorem is a classification of all irreducible complex representa-
tions of B,, of degree r, where 2 <r <n—1forn > 7.

THEOREM 3.2. ([4]) Let n > 7, all irreducible complex representations of
B,, of dimension r, where 2 < r <n — 1, are of Burau type.

THEOREM 3.3. ([4, Theorem 15]) Let p : B, — GL, be an irreducible
representation, where n > 5. Then the following are equivalent:
(a) the representation p is of Burau type;
(b) for some y € C*, y~'p(01) is pseudoreflection;
(c) for some y € C*, p(o) — ylI is a matrix of rank 1.

THEOREM 3.4. ([7, p.144-145]0 For n > 5, the symmetric group S,, has
no irreducible representation of dimension r, such that 1 <r <n — 1.

THEOREM 3.5. ([7, Result 2]) For n > 9, the first four minimal degrees
of S,, are:

THEOREM 3.6. ([5]) Every representation of a finite group G over a field
F with characteristic not dividing the order of G is semi-simple; that is a
direct sum of irreducible representations.
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We use this theorem to give a classification of irreducible complex rep-
resentations of the symmetric group and hence of the group of conjugating
automorphisms C),, when n > 5.

We now prove a result about symmetric groups, which is similar to Theo-
rem [3.1] about braid groups.

PROPOSITION 3.1. Let v : S, — GL,(C) be an irreducible representation
such that n > 5 , r > 2 and (1) is pseudoreflection. Then 1) is equivalent
to the restriction of ¢p(z) : C, = GLp—1(C) to the symmetric group Sy,.

Proof. Let v: B, — S, be a surjective map and ® : S,, = GL,(C) be
an irreducible representation, such that 1 (aq) is a pseudoreflection, then ¥ ov
is an irreducible representation of B,. So, by Theorem and Theorem |3.4
Yov is equivalent to 3, (z), when z is not a root of f,,(t) = t" 14" 24. . +t+1
for n > 5. This implies that ¥ («;) is equivalent to ,(z)(c;). It’s easy to see
that z = 1. Direct calculations show that 3,(£1) is equivalent to ¢ /Sn- O

We now improve this result by not requiring that the image of a generator
is a pseudoreflection. We get the following proposition.

PROPOSITION 3.2. Let p: S, = GL,.(C) be an irreducible representation,
such that n > 7 and 2 < r < n — 1, then p is equivalent to yop.)/s, where
y,z € C* and y is unique.

Proof Wehavev: B, — S, is a surjective map and p: S, — GL,(C)
is an irreducible representation, then pov : B, — GL,(C) is irreducible.
Since n > 7, by Theorem pov is of Burau type. Then, by Theorem
there exists y € C* such that y~!powv(oy) is a pseudoreflection. This implies
that y~!p(a) is a pseudoreflention. Using Proposition we obtain y~!p is
equivalent to (5 B/S,- Hence p is equivalent to ng B/Sn- O

For n > 9, Theorem [3.5] provides a stronger result.

LeEmMA 3.1. ([11]) For n > 10, there are no irreducible complex repre-
sentations of the braid group B, on n strings of dimension n + 1.

Using Lemma we deduce that there are no irreducible representations
of S, of degree n 4+ 1, where n > 10. This result was initially found by R.
Rasala (Theorem [3.5)).

COROLLARY 3.1. There are no irreducible complex representations of S,
of dimension n + 1, for all n > 10.
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Proof Wehave v: B, — S, is surjective map, such that v(o;) = ;.
Suppose that for all n > 10, there exists v : S,, = GL,+1(C) an irreducible
representation of S, of dimension n+1. The representation yov : B, —
GLy+1(C) is irreducible because v o v(0;)V = ~(a;)V for all V subspaces
of GLy+1(C). This is because « is irreducible. This gives an irreducible
representation of B,, of degree n+ 1, which gives a contradiction with Lemma
Hence, we deduce that there are no irreducible complex representations
of S, of dimenion n + 1, for all n > 10. O

Using previous results, we describe the restrictions of the representations
of C), onto B,, and S,, of dimension r when 2 <r <n — 3, and n > 5. Then
we attempt to give a classification of irreducible complex representations of
C,, of degree at most n — 3.

Using results of E. Formanek [4], we easily see that for n > 5, there are no

irreducible complex representations of the braid group B, of degree < n — 3
except the one-dimensional representation.

0 _Irfs
where 1 < s < r. Here I is the s X s identity matrix and I,_s is the (r — s) x
(r — s) identity matrix. If M is an r X r matrix that commutes with K, then

M= (Agl ]\2)’ where M, is an s X s matrix and My is an (r — s) x (r — s)
4

matrix.

LEMMA 3.2. Let K be an r x r matrix defined by K = <IS 0 >,

Proof Let M be an r X r matrix that commutes with K. Set M =

M, M, . . . .
<M3 M) where M is an s X s matrix and My is an (r —s) X (r —s) matrix.
) B , My My\ (M —M,
Since KM = MK, it follows that <_M3 —M4> = <M3 —M4> . Thus M,
. M, 0 .
and Ms are zero matrices, and so M = 0 M) 3 required. O
4

THEOREM 3.7. Let p: C, — GL,(C) be a representation such that n > 5
and 2 <r <n —3. Then p is reducible.

P roof. Wehave that p/5, and p,p, are both reducible by Theorem
and results in [4]. For some basis, the representation of S, is semi-simple,
that is equivalent to a direct sum of one-dimensional representations. Let p’
be an equivalent representation of p such that p’ is semi-simple. Since p’(«;)
is direct sum of blocks and a? =1 for all 1 <i < n — 1, it follows that p/(;)
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is a diagonal matrix with diagonal entries either 1 or —1. We consider two
cases:

(i) Assume first that p’(«q;) is constant for all 1 <7 < n—1, thatis p/(«;) = ¢ 1,
where ¢; € {—1,1} for all 1 <4 < n — 1. In this case, we easily see that p is
reducible as ,0’/ B, 1s reducible. Hence, p is reducible.

(ii) Assume now, without loss of generality, that p’(aq) is not constant. Let

P be the permutation matrix such that P~1p/(a1)P = (% IO >, where
“Ar—s

1 <s<r. Let p’ = P 'pP. Since p"(q) is still a diagonal matrix as P is

(i)
a permutation matrix, it follows that we may write p”(a;) = (Ag Ag) ),

T—S8
where A is an s x s diagonal matrix and Ag sisan (r—s) x (r—s) diagonal
matrix for all 1 <4 < n — 1. Using the relations a10; = oo for all 3 < j <

(%) .
n — 1, and using Lemma we see that p”(0;) = (BS B?i) ) , where B"

rT—S
is an s x s matrix and B,(f_)s isan (r—s) x (r —s) matrix for all 3 <i <n—1.

Now, using ooazae = azagos, we get that oy = agasosasas and so p’'(09) =

o B® o
p"(az)p" (a2)p"(03)p" (a2)p” (av3). This implies that p”(02) = ( S 5® )
where B is an s x s matrix and BﬁQ_)s is an (r — s) x (r — s) matrix. In
the same way, and using the relation ojasa1 = asayog, we get that p”(o1) =

(Bé” 0 0 0

o M ) where Bs’ is an s X s matrix and B,_; is an (r —s) x (r —s)
e

(@) (4)
matrix. Thus, p’(q;) = (AS Ag) ) and p’(0;) = (BS Bg) ), where

Agi) are diagonal matrices for all 1 < ¢ < n — 1. Therefore p” is reducible and
so p is reducible. O

4. Irreducible representations of C), of degree n — 1

In this section, we prove a partial result which determines complex rep-
resentations p : C, — GL,_1(C), where both restrictions to S,, and B,, are
irreducible.

LEMMA 4.1. For n > 4, consider a representation p : C,, — GL,_1(C),
where p(0;) = ¢p(0;) and p(ey) = K~ '¢p(ay)K fori=1,...,n — 1. Here K
is an (n — 1) x (n — 1) invertible matrix. Using one type of the relations in
Cn, ¢5(0)) K Y¢p(aj)K = K '¢p(a)Kép(oi) (|j — i > 2), we get that K
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/

is a block lower triangular matrix ( . 2) , where K’ is an (n —2) x (n — 2)

invertible matrix and ¢ € C*.

P roof We take into account the general form of a; and o; under p.
We make computations for the 3 x 3 main blocks. For simplicity, we prove
the lemma for n = 4; that is p : Cy — GL3(C). We determine the form
of the matrix M that commutes with the image of the generator og of Cjy.

1 0 0
We have p(o3) = | 0 1 0 |. Consider a 3 x 3 invertible matrix
-1 -1 —¢t1

. Now, p(o3)M = Mp(o3) implies that

I
e e
>0 o
S 0

a b c
d e f
—a—d—tlg -b—e—t""h —c—f—t"1

a—c b—c —ct7!
=|d=f e—j -t
g—i h—i —it!

a b 0
Direct computations show that c = f =0,andsoM = [d e 0. Let us
g h i
put @ = 1. It is then easy to see that the vector v = ., 0, 1)T is an eigenvec-
a2 a3
tor of the matrix M with eigenvalue equals 1. Now let K = a2 Q93

a31 az2 ass
Using the relation ¢B(03)K 1¢B(a1)K K~ 1@53 (g KQSB 03), we see that
K~1¢p(a1)K commutes with ¢5(c3). So we take M = K~ 1¢B(a1)K and as-

sume that (3,3) entry of this matrix is one. Since the vector v = (0,...,0,1)T

is fixed by M, it follows that ¢p(a1)(Kv) = Kv, and so Kv is an eigenvec-
ais

tor of ¢pp(a1) with eigenvalue equals one. Note that Kv = | ags |. On the
ass

other hand, the eigenvectors of ¢p(a) that correspond to the eigenvalue 1

0 1
areu; = | 0| and us = | 1 |. Hence, Kv = ciuq + cous, where ¢; and co are

1 0
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C2 ailr a2 013
scalars. Thus, Kv = [ c2 | and so K = | a1 a2 a1z |. Using the other
c1 azr @32 033
relation ¢p(01)K 'ép(as)K = K '¢p(as)Kop(o1), we get ayz = 0, and so
K is a block lower triangular matrix. O

THEOREM 4.1. Let p : C, — GL,—1(C) be a representation such that
n > 7. Assume that p;s, and p,p, are irreducible, then p is equivalent to a
representation pi given by

p1(a;) = leEB(Zl)(O‘i)
and
p1(oi) = yzQASB(ZZ)(O’i)

for all 1 < ¢ < n —1, where y1,y2, 21 and zo are non zero complex numbers.
Here, ¢p(z;) (i = 1,2) are the extensions of the reduced Burau representation.

P roof. Forn > 7, consider the representation p : C,, — GL,_1(C) such
that p,g, and p,p, are both irreducible. Then both representations are equiv-

alent to the extension of the reduced Burau representation &B(z) restricted
to S, and B, respectively, up to tensoring by a one-dimensional representa-
tion (See Theorem Proposition . Without loss of generality, we might
consider an equivalent representation of p and we still denote the obtained
representation by p. More precisely, we write the images under the represen-
tation p of the generators a; and oy as follows: p(a;) = 11K 1og(z1) () K
and p(o;) = y2dp(22)(0), where y1,y2, 21 and 2 are non zero complex num-
bers, 1 <i<mn-—1and K is an (n— 1) x (n — 1) invertible matrix. For n > 7,
we take into account that general form of «; and o; under p. We make compu-
tations for the 3 x 3 main blocks in them and we use mathematical induction
on n. We consider the generators of Sy and By as a reference, where the ma-
trices of the generators a; and o; under p are equivalent to (;ASB(Z) restricted
to S, and B, respectively.

By Lemma the matrix K is block lower triangular, and so consider

a b 0
K=|d e 0], wherea,b,d,e,g,h,i €C,i+#0, ae—>bd=#0. The images
g h 1

of the generators a; and o; under ¢p(z) are

010 100 1 0 0
ar—= |10 0],a0e>{00 1],a35~>(0 1 0],
00 1 01 0 1 -1 -1
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and
1—2z71 10 1 0 0
or— | z' 00,000 1—271 1],
0 0 1 0 =zt 0
1 0 0
os— | 0 1 0
-1 -1 —z7t

Applying the relations between the generators p(«;) and p(o;) (Definition
, we obtain equations in seven unknowns. Using Mathematica software to
simplify computations, we get that the matrix K is a constant matrix. This
implies that p is equivalent to dA)B(z). We now use mathematical induction on
n>"1.

We assume that representations c;AS B/B,_, and (JB B/S,_, satisfy the relations
in Cp,_1 implies that the (n — 2) x (n — 2) matrix K involved in conjugating
gZ;B /S,_, 1s the constant matrix. We now prove that this result remains true
for our representation p : C,, — GL,,—1(C), where the restriction to S, and
B, are &B /B, and (;ASB /S,- Under the hypothesis, both representations pg,

and pp, are equivalent to qZ;B(z) restricted to S, and B, respectively. We
consider the restrictions of the representation p on S,_1 and B,,_1. It is easy
to see that the representation p/p , of degree n — 1 is reducible because

the row vector (1,1,...,1) is fixed under the representation. In this case, we
/

write the generator o; of p/p, 1 = 1,2,...,n — 2, as (U*Z (1)> for a choice

of a basis, where o] = QEB/BWI(UZ-) of degree n — 2. It is worth saying that
this representation of o;, given by block lower triangular matrices, is obtained
with respect to some basis; That is, all our representations are defined up to
equivalence. Similarly, the representation p/g, _, is reducible. By the result of
Maschke (Theorem , the complex representation of the finite group .5, is
semi-simple, that is equivalent to a direct sum of a representation of degree

n — 2 and a one-dimensional representation. So, with respect to a basis, each
/

a; under p/g, ., 1 =1,2,...,n—2, is written as <%Z 1) , where o is similar

to (&B/Sn_l(ai) of degree n — 2.

Upon conjugation of the matrices a;; and o, we still call the matrix involved
in conjugating the matrices a; by K, which is assumed to be block lower
triangular by Lemma Writing the relations between the generators of C,,,
«; and oy, for 1 < i < n—1, we perform multiplication of block lower triangular
matrices to obtain the same relations as in C,_1, involving the generators
Qai, . ..,0a,—9 and the generators o1,...,0,—2 . For instance, considering the
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left hand side of the relation in Cy, p(cy)p(o;) = p(oj)p(as), |i — 7] > 2, we
obtain

K= 0 a; 0\ (K" 0\ (o; 0) _ K’*lagK’Ug- 0 Similarl
* ¢! 0 1 x c)\x 1) * 1) DALY

,AK/_I /K/
the right hand side of the relation is % . @i (1)

Likewise, all the other relations in C,_; are obtained in this way. We
remark that o} = qAﬁB/Bn_l(aj) and o) = QAﬁB/Sn_l(ozi). Having the relations
satisfied in C),_1, this implies that K’ is a block lower triangular matrix by
Lemma By induction, since the result is true for C,,_1, we conclude that
K’ is the constant matrix. This means that K’ = dI,_o, where d € C*. This
means that the (n — 1) x (n — 1) matrix K is a block lower triangular matrix

dlp—2 0

of the form . On the other hand, we use the remaining relations

in C), involving the generators, not used so far, namely «,,—1 and o,_1. Direct
calculations show that d = ¢ and the entries off the main diagonal are zeros,
and so K =cl,_1. O

For n = 3, we prove a result similar to that of Theorem [£.1]when r = n—1.

THEOREM 4.2. Let p : C3 — GL2(C) be an irreducible representation.
Assume that p,s, and p,p, are both irreducible. Then we have non trivial rep-
resentations, among them is the extension of the reduced Burau representation
ép(z), where z € C*.

P r oo f. By aresult of Formanek [4], Theorem [3.2remains true for n = 3.

~

This means that p,p, is equivalent to ¢p /g, , up to tensoring by 1-dimensional

representation. On the other hand, p,g, is equivalent to <Z>B /5;- Consider a
matrix K, which is used to conjugate the representation p,g,. Thus, we let

K= <CCL Z) , where a,b,c,d € C and ad — be # 0. In this case, we have:
(1= =11 N 0
01 t_l 0 ;02 -1 —t_l )
. 01 d o s 1 0
(03] 1 0/ and oo 1 -1/

Using the only two relations: o109 Ka1 K1 = KapK o109 and

o1 Kasa K1 = Kasa1 Koy, we get that K = (_c;_d —dc> . Thus, we
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see that we have infinite solutions if d> — c¢d + ¢? # 0. If we let ¢ = 0, then
K = dI, where d # 0. This gives us the extension of the reduced Burau
representation ¢p(z), for z € C*. O

5. Conclusion

As E. Formanek gave classification for irreducible complex representations
p:Byp— GL.(C),n>7and 2 <r <n-—1, we extend this work to the group
of conjugating automorphisms of a free group C,,, namely C,, — GL,(C), for
specific values of r; more precisely, when 2 < r < n — 3. We also show that if
r =n — 1 and the restrictions of p to S, and B,, are both irreducible then the
representation p is equivalent to the extension of the Burau representation, up
to tensoring by one-dimensional representation.
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