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1. Introduction

The classical braid group Bn on n strings is the abstract group with gen-
erators: σ1, σ2, . . . , σn−1 and a presentation as follows:

σiσi+1σi = σi+1σiσi+1, i = 1, 2, . . . , n− 2,

σiσj = σjσi, |i− j| ≥ 2.

Bn has a normal subgroup called the pure braid group and is denoted by
Pn. The pure braid group is the kernel of the surjective map ν : Bn → Sn
defined by σi 7→ αi, where Sn is the symmetric group on n elements, with
generators: α1, α2, . . . , αn−1 and a presentation as follows:

α2
i = 1, i = 1, 2, . . . , n− 2,

αiαi+1αi = αi+1αiαi+1, i = 1, 2, . . . , n− 2,

αiαj = αjαi, |i− j| ≥ 2.

One of the famous representations of the group Bn is the Burau repre-
sentation [3]. Let z ∈ C∗, the reduced Burau representation βn(z) : Bn →
GLn−1(C) is defined by specializing t 7→ z in βn : Bn → GLn−1(Z[t±]), where
t is an indeterminate [4]. Other linear representations of the braid group were
constructed, where the question of irreducibility has been the focus of many
studies [1].

A generalization of the braid group is the group of conjugating automor-
phisms Cn, a subgroup of Aut(Fn), where Fn =
< x1, x2, . . . , xn > is the free group of rank n. For all β ∈ Cn, β(xi) =
f−1
i xπ(i)fi, where π ∈ Sn and fi ∈ Fn. In addition, if β(x1x2 . . . xn) =
x1x2 . . . xn then β ∈ Bn. By theorem of Artin [9], we define a faithful repre-
sentation of the braid group Bn in Aut(Fn).

Furthermore, Cn has a normal subgroup called the group of basis conju-
gating automorphisms and denoted by Cbn. Note that Cbn satisfies for all
β ∈ Cbn, β(xi) = f−1

i xifi. According to [2] , the structure of Cbn is similar
to the structure of Pn. Also, the quotient groups Bn/Pn and Cn/Cbn are iso-
morphic to Sn. Moreover, the generators of Cn are those of the braid group
with those of the symmetric group (see Definition 2.5).

Let F ′
n = [Fn, Fn] be the commutator subgroup of Fn and An = Fn/F

′
n.

The extension of Burau representation on Cn is obtained by restricting

µ : IA(Fn) → GLn(Z[t1±1, . . . , tn
±1])

to Cbn and by putting t1 = . . . = tn = t, where IA(Fn) is the kernel of the
epimorphism Aut(Fn) → Aut(An) and t1, . . . , tn are indeterminate variables
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(see [3] and [2]).

In this paper, we prove that every irreducible representation of Sn of non
trivial dimension, having the image of the generator α1 under this representa-
tion a pseudoreflection, is equivalent to the restrictions of the extension of the
reduced Burau representation to Sn namely ϕ̂B/Sn

(z), for n ≥ 5 (Proposition
3.1). We also get a similar proposition, for n ≥ 7, without requiring the image
of a generator of Sn to be a pseudoreflection (Proposition 3.2). Our first result
is Theorem 3.7, which classifies all irreducible complex representations of Cn

of dimensions r, when 2 ≤ r ≤ n−3 and n ≥ 5. Our second result is Theorem
4.1, which classifies representations ρ : Cn 7→ GLn−1(C), where n ≥ 7 and
both of the restrictions of ρ to Sn and Bn are irreducible.

2. Preliminaries and notations

Let Cr denote the r × 1 vectors, and C̄r denote the 1 × r vectors. We
say that a matrix Z ∈ Mr(C) is a pseudoreflection if the rank of Z − I is
1. If Z is a pseudoreflection then there exist X ∈ Cr and Y ∈ C̄r such that
Z = I−XY . The eigenvalues of Z are 1 (with multiplicity r− 1) and 1−Y X
(with multiplicity 1). Note that Z is invertible if and only if Y X ̸= 1.

Definition 2.1. [4] Let z ∈ C∗. The complex specialization of the re-
duced Burau representation βn(z) : Bn → GLn−1(C) is defined on the gener-
ators σi of Bn, 1 ≤ i ≤ n−1, by pseudoreflections βn(z)(σi) = I−PiQi, where

P1 =


1
−1
0
...
0

, Pn−1 =


0
...
0
1

, Pi =



0
...
0
1
−1
0
...
0



}
i− 1

}
n− i− 2

for 1 ≤ i ≤ n− 2

and

Q1 =
(
z−1 −1 0 . . . 0

)
, Qn−1 =

(
1 1 . . . 1 1 + z−1

)
,

Qi = (

i−1︷ ︸︸ ︷
0 . . . 0 z−1 − 1

n−i−2︷ ︸︸ ︷
0 . . . 0) for 1 ≤ i ≤ n− 2.
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The associated matrix (QiPj) is

(QiPj) =



z−1 + 1 −z−1 0 · · · 0 0

−1 z−1 + 1 −z−1 . . . 0 0

0 −1 z−1 + 1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . z−1 + 1 −z−1

0 0 0 · · · −1 z−1 + 1


.

Definition 2.2. ([4]) Let z be a root of fn+1(t) = tn + tn−1 + . . .+ t+1,

where n ≥ 3. Then the extension of βn(z) to Bn+1, namely β̂n+1(z) : Bn+1 →
GLn−1 is the irreducible representation defined by β̂n+1(z)(σi) = βn(z)(σi) for

1 ≤ i ≤ n− 1, and β̂n+1(z)(σn) = I − PQ, where P =


0
...
0
1


and Q = (−1)n−2z(1, −(1+ z), (1+ z+ z2), . . . , (−1)n−2(1+ z+ . . .+ zn−2)).

Lemma 2.1. ([4]) The specialization of the reduced Burau representation
βn(z) : Bn → GLn−1(C) is either irreducible if z ∈ C∗ is not a root of fn(t) =

tn−1+ tn+ . . .+ t+1, or has an irreducible composition factor β̂n(z) of degree
n− 2 if z ∈ C∗ is a root of fn(t) and n ≥ 4.

The standard representation was first discovered in 1996 by D. Tong and
others [12, Eq.(19)]. I. Sysoeva used the complex specialization of the standard
representation to classify the irreducible representations of the braid group of
degree n.

Definition 2.3. [10] Let u ∈ C∗. A specialization of the standard
representation is the representation

τn(u) : Bn → GLn(C)
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defined by

τn(u)(σi) =


Ii−1

0 u
1 0

In−1−i


for 1 ≤ i ≤ n− 1, where Ik is the k × k identity matrix. This representation
is irreducible if and only if u ̸= 1.

Lemma 2.2. ([10, Theorem 6.1]) Suppose that ρ : Bn → GLn(C) is an
irreducible representation of Bn of degree n ≥ 9. Then it is equivalent to the
tensor product of a one-dimensional representation and a specialization of the
standard representation.

Definition 2.4. [4] A representation of the braid group Bn → GLr(C)
is of Burau type if r ≥ 2 and it is equivalent to an irreducible representation
which is the tensor product of a one dimensional representation and βn(z) or

β̂n(z).

We now introduce the group of conjugating automorphisms Cn as an ab-
stract group with generators and relations.

Definition 2.5. [8] The group of conjugating automorphisms, denoted
by Cn, is generated by {σ1, σ2, . . . , σn−1, α1, α2, . . . , αn−1}, where σi, 1 ≤ i ≤
n − 1, generate the braid group Bn and αi, 1 ≤ i ≤ n − 1, generate the
symmetric group Sn, with the defining relations:

σiαj = αjσi, if |i− j| ≥ 2,

σiαi+1αi = αi+1αiσi+1,

σiσi+1αi = αi+1σiσi+1,

σiσj = σjσi, if |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1,

α2
i = 1,

αiαj = αjαi, if |i− j| ≥ 2,

αiαi+1αi = αi+1αiαi+1.

Theorem 2.1. ([6, Theorem 6]) The extension of Burau representation
on Cn of degree n is reducible.
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Definition 2.6. ([6]) Let z ∈ C∗ and let ϕ̂B(z) : Cn → GLn−1(C) be
the specialization of the extension of the reduced Burau representation on Cn,
defined as follows:

ϕ̂B(z)(σi) = βn(z)(σi) and ϕ̂B(z)(αi) = I −RiSi, 1 ≤ i ≤ n− 1,

where

R1 =


−1
1
0
...
0

, Rn−1 =


0
...
0
1

, Ri =



0
...
0
−1
1
0
...
0



}
i− 1

}
n− i− 2

for 1 ≤ i ≤ n− 2,

and

S1 =
(
−1 1 0 . . . 0

)
, Sn−1 =

(
1 1 . . . 1 2

)
, and

Si = (

i−1︷ ︸︸ ︷
0 . . . 0 −1 1

n−i−2︷ ︸︸ ︷
0 . . . 0), for 1 ≤ i ≤ n− 2.

The associated matrix (SiRj) is

(SiRj) =



2 −1 0 · · · 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . 2 −1

0 0 0 · · · −1 2


.

Theorem 2.2. ([6]) For z ∈ C∗, the representation ϕ̂B(z) : Cn →
GLn−1(C) is irreducible.

3. Classification of irreducible representations of the group of
conjugating automorphisms Cn of degree at most n− 3

E. Formanek has classified all irreducible representations of Bn of which
the generators are given by pseudoreflections. It is well known that Cn is
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generated by {σ1, . . . , σn−1} and {α1, . . . , αn−1}, the generators of Bn and Sn
respectively. It is then natural to classify all those irreducible representations
of the group of conjugating automorphisms Cn 7→ GLr(C), where 2 ≤ r ≤
n + 1. In our work, we consider r such that 2 ≤ r ≤ n − 3 and classify all
irreducible representations of Cn of degree r. First, we state some previous
results of E. Formanek and R. Rasala.

Theorem 3.1. ([4, Theorem 10]) Let ρ : Bn → GLr(C) be an irreducible
representation, where n ≥ 5 and r ≥ 2. Suppose ρ(σ1) is a pseudoreflection.
Then one of the following is satisfied.
(i) ρ is equivalent to βn(z) : Bn → GLn−1(C), where z ∈ C∗ is not a root of
fn(t) = tn−1 + tn−2 + . . .+ 1,

(ii) ρ is equivalent to β̂n(z) : Bn → GLn−2(C), where z ∈ C∗ is a root of fn(t).

The next theorem is a classification of all irreducible complex representa-
tions of Bn of degree r, where 2 ≤ r ≤ n− 1 for n ≥ 7.

Theorem 3.2. ([4]) Let n ≥ 7, all irreducible complex representations of
Bn of dimension r, where 2 ≤ r ≤ n− 1, are of Burau type.

Theorem 3.3. ([4, Theorem 15]) Let ρ : Bn → GLr be an irreducible
representation, where n ≥ 5. Then the following are equivalent:
(a) the representation ρ is of Burau type;
(b) for some y ∈ C∗, y−1ρ(σ1) is pseudoreflection;
(c) for some y ∈ C∗, ρ(σ)− yI is a matrix of rank 1.

Theorem 3.4. ([7, p.144-145]0 For n ≥ 5, the symmetric group Sn has
no irreducible representation of dimension r, such that 1 < r < n− 1.

Theorem 3.5. ([7, Result 2]) For n ≥ 9, the first four minimal degrees
of Sn are:
(a) 1,
(b) n− 1,
(c) 1

2n(n− 3),

(d) 1
2(n− 1)(n− 2).

Theorem 3.6. ([5]) Every representation of a finite group G over a field
F with characteristic not dividing the order of G is semi-simple; that is a
direct sum of irreducible representations.
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We use this theorem to give a classification of irreducible complex rep-
resentations of the symmetric group and hence of the group of conjugating
automorphisms Cn, when n ≥ 5.

We now prove a result about symmetric groups, which is similar to Theo-
rem 3.1 about braid groups.

Proposition 3.1. Let ψ : Sn → GLr(C) be an irreducible representation
such that n ≥ 5 , r ≥ 2 and ψ(α1) is pseudoreflection. Then ψ is equivalent

to the restriction of ϕ̂B(z) : Cn → GLn−1(C) to the symmetric group Sn.

P r o o f. Let ν : Bn → Sn be a surjective map and ψ : Sn → GLr(C) be
an irreducible representation, such that ψ(α1) is a pseudoreflection, then ψ ◦ν
is an irreducible representation of Bn. So, by Theorem 3.1 and Theorem 3.4,
ψ◦ν is equivalent to βn(z), when z is not a root of fn(t) = tn−1+tn−2+. . .+t+1
for n ≥ 5. This implies that ψ(αi) is equivalent to βn(z)(αi). It’s easy to see

that z = ±1. Direct calculations show that βn(±1) is equivalent to ϕ̂B/Sn
. 2

We now improve this result by not requiring that the image of a generator
is a pseudoreflection. We get the following proposition.

Proposition 3.2. Let ρ : Sn → GLr(C) be an irreducible representation,

such that n ≥ 7 and 2 ≤ r ≤ n − 1, then ρ is equivalent to yϕ̂B(z)/Sn
where

y, z ∈ C∗ and y is unique.

P r o o f. We have ν : Bn → Sn is a surjective map and ρ : Sn → GLr(C)
is an irreducible representation, then ρ ◦ ν : Bn → GLr(C) is irreducible.
Since n ≥ 7, by Theorem 3.2, ρ ◦ ν is of Burau type. Then, by Theorem 3.3,
there exists y ∈ C∗ such that y−1ρ ◦ ν(σ1) is a pseudoreflection. This implies
that y−1ρ(α1) is a pseudoreflention. Using Proposition 3.1, we obtain y−1ρ is

equivalent to ϕ̂B/Sn
. Hence ρ is equivalent to yϕ̂B/Sn

. 2

For n ≥ 9, Theorem 3.5 provides a stronger result.

Lemma 3.1. ([11]) For n ≥ 10, there are no irreducible complex repre-
sentations of the braid group Bn on n strings of dimension n+ 1.

Using Lemma 3.1, we deduce that there are no irreducible representations
of Sn of degree n + 1, where n ≥ 10. This result was initially found by R.
Rasala (Theorem 3.5).

Corollary 3.1. There are no irreducible complex representations of Sn
of dimension n+ 1, for all n ≥ 10.
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P r o o f. We have ν : Bn → Sn is surjective map, such that ν(σi) = αi.
Suppose that for all n ≥ 10, there exists γ : Sn → GLn+1(C) an irreducible
representation of Sn of dimension n+1. The representation γ ◦ ν : Bn →
GLn+1(C) is irreducible because γ ◦ ν(σi)V = γ(αi)V for all V subspaces
of GLn+1(C). This is because γ is irreducible. This gives an irreducible
representation of Bn of degree n+1, which gives a contradiction with Lemma
3.1. Hence, we deduce that there are no irreducible complex representations
of Sn of dimenion n+ 1, for all n ≥ 10. 2

Using previous results, we describe the restrictions of the representations
of Cn onto Bn and Sn of dimension r when 2 ≤ r ≤ n − 3, and n ≥ 5. Then
we attempt to give a classification of irreducible complex representations of
Cn of degree at most n− 3.

Using results of E. Formanek [4], we easily see that for n ≥ 5, there are no
irreducible complex representations of the braid group Bn of degree ≤ n − 3
except the one-dimensional representation.

Lemma 3.2. Let K be an r × r matrix defined by K =

(
Is 0
0 −Ir−s

)
,

where 1 ≤ s < r. Here Is is the s× s identity matrix and Ir−s is the (r− s)×
(r − s) identity matrix. If M is an r × r matrix that commutes with K, then

M =

(
M1 0
0 M4

)
, where M1 is an s× s matrix and M4 is an (r− s)× (r− s)

matrix.

P r o o f. Let M be an r × r matrix that commutes with K. Set M =(
M1 M2

M3 M4

)
, whereM1 is an s×s matrix andM4 is an (r−s)×(r−s) matrix.

Since KM =MK, it follows that

(
M1 M2

−M3 −M4

)
=

(
M1 −M2

M3 −M4

)
. Thus M2

and M3 are zero matrices, and so M =

(
M1 0
0 M4

)
as required. 2

Theorem 3.7. Let ρ : Cn 7→ GLr(C) be a representation such that n ≥ 5
and 2 ≤ r ≤ n− 3. Then ρ is reducible.

P r o o f. We have that ρ/Sn
and ρ/Bn

are both reducible by Theorem 3.4
and results in [4]. For some basis, the representation of Sn is semi-simple,
that is equivalent to a direct sum of one-dimensional representations. Let ρ′

be an equivalent representation of ρ such that ρ′ is semi-simple. Since ρ′(αi)
is direct sum of blocks and α2

i = 1 for all 1 ≤ i ≤ n− 1, it follows that ρ′(αi)
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is a diagonal matrix with diagonal entries either 1 or −1. We consider two
cases:

(i) Assume first that ρ′(αi) is constant for all 1 ≤ i ≤ n−1, that is ρ′(αi) = ciIr,
where ci ∈ {−1, 1} for all 1 ≤ i ≤ n − 1. In this case, we easily see that ρ′ is
reducible as ρ′/Bn

is reducible. Hence, ρ is reducible.

(ii) Assume now, without loss of generality, that ρ′(α1) is not constant. Let

P be the permutation matrix such that P−1ρ′(α1)P =

(
Is 0
0 −Ir−s

)
, where

1 ≤ s < r. Let ρ′′ = P−1ρ′P . Since ρ′′(αi) is still a diagonal matrix as P is

a permutation matrix, it follows that we may write ρ′′(αi) =

(
A

(i)
s 0

0 A
(i)
r−s

)
,

where A
(i)
s is an s×s diagonal matrix and A

(i)
r−s is an (r−s)× (r−s) diagonal

matrix for all 1 ≤ i ≤ n− 1. Using the relations α1σj = σjα1 for all 3 ≤ j ≤

n− 1, and using Lemma 3.2, we see that ρ′′(σi) =

(
B

(i)
s 0

0 B
(i)
r−s

)
, where B

(i)
s

is an s× s matrix and B
(i)
r−s is an (r− s)× (r− s) matrix for all 3 ≤ i ≤ n− 1.

Now, using σ2α3α2 = α3α2σ3, we get that σ2 = α3α2σ3α2α3 and so ρ′′(σ2) =

ρ′′(α3)ρ
′′(α2)ρ

′′(σ3)ρ
′′(α2)ρ

′′(α3). This implies that ρ′′(σ2) =

(
B

(2)
s 0

0 B
(2)
r−s

)
,

where B
(2)
s is an s × s matrix and B

(2)
r−s is an (r − s) × (r − s) matrix. In

the same way, and using the relation σ1α2α1 = α2α1σ2, we get that ρ′′(σ1) =(
B

(1)
s 0

0 B
(1)
r−s

)
, where B

(1)
s is an s× s matrix and B

(1)
r−s is an (r− s)× (r− s)

matrix. Thus, ρ′′(αi) =

(
A

(i)
s 0

0 A
(i)
r−s

)
and ρ′′(σi) =

(
B

(i)
s 0

0 B
(i)
r−s

)
, where

A
(i)
s are diagonal matrices for all 1 ≤ i ≤ n− 1. Therefore ρ′′ is reducible and

so ρ is reducible. 2

4. Irreducible representations of Cn of degree n− 1

In this section, we prove a partial result which determines complex rep-
resentations ρ : Cn 7→ GLn−1(C), where both restrictions to Sn and Bn are
irreducible.

Lemma 4.1. For n ≥ 4, consider a representation ρ : Cn 7→ GLn−1(C),
where ρ(σi) = ϕ̂B(σi) and ρ(αi) = K−1ϕ̂B(αi)K for i = 1, . . . , n− 1. Here K
is an (n − 1) × (n − 1) invertible matrix. Using one type of the relations in

Cn, ϕ̂B(σi)K
−1ϕ̂B(αj)K = K−1ϕ̂B(αj)Kϕ̂B(σi) (|j − i| ≥ 2), we get that K
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is a block lower triangular matrix

(
K ′ 0
∗ c

)
, where K ′ is an (n− 2)× (n− 2)

invertible matrix and c ∈ C∗.

P r o o f. We take into account the general form of αi and σi under ρ.
We make computations for the 3 × 3 main blocks. For simplicity, we prove
the lemma for n = 4; that is ρ : C4 7→ GL3(C). We determine the form
of the matrix M that commutes with the image of the generator σ3 of C4.

We have ρ(σ3) =

 1 0 0
0 1 0
−1 −1 −t−1

. Consider a 3 × 3 invertible matrix

M =

a b c
d e f
g h i

. Now, ρ(σ3)M =Mρ(σ3) implies that

 a b c
d e f

−a− d− t−1g −b− e− t−1h −c− f − t−1i



=

a− c b− c −ct−1

d− f e− f −ft−1

g − i h− i −it−1

 .

Direct computations show that c = f = 0, and soM =

a b 0
d e 0
g h i

. Let us

put i = 1. It is then easy to see that the vector v = (0, . . . , 0, 1)T is an eigenvec-

tor of the matrixM with eigenvalue equals 1. Now let K =

a11 a12 a13
a21 a22 a23
a31 a32 a33

.

Using the relation ϕ̂B(σ3)K
−1ϕ̂B(α1)K = K−1ϕ̂B(α1)Kϕ̂B(σ3), we see that

K−1ϕ̂B(α1)K commutes with ϕ̂B(σ3). So we take M = K−1ϕ̂B(α1)K and as-
sume that (3, 3) entry of this matrix is one. Since the vector v = (0, . . . , 0, 1)T

is fixed by M , it follows that ϕ̂B(α1)(Kv) = Kv, and so Kv is an eigenvec-

tor of ϕ̂B(α1) with eigenvalue equals one. Note that Kv =

a13a23
a33

. On the

other hand, the eigenvectors of ϕ̂B(α1) that correspond to the eigenvalue 1

are u1 =

0
0
1

 and u2 =

1
1
0

. Hence, Kv = c1u1 + c2u2, where c1 and c2 are
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scalars. Thus, Kv =

c2c2
c1

 and so K =

a11 a12 a13
a21 a22 a13
a31 a32 a33

. Using the other

relation ϕ̂B(σ1)K
−1ϕ̂B(α3)K = K−1ϕ̂B(α3)Kϕ̂B(σ1), we get a13 = 0, and so

K is a block lower triangular matrix. 2

Theorem 4.1. Let ρ : Cn → GLn−1(C) be a representation such that
n ≥ 7. Assume that ρ/Sn

and ρ/Bn
are irreducible, then ρ is equivalent to a

representation ρ1 given by

ρ1(αi) = y1ϕ̂B(z1)(αi)

and

ρ1(σi) = y2ϕ̂B(z2)(σi)

for all 1 ≤ i ≤ n − 1, where y1, y2, z1 and z2 are non zero complex numbers.
Here, ϕ̂B(zi) (i = 1, 2) are the extensions of the reduced Burau representation.

P r o o f. For n ≥ 7, consider the representation ρ : Cn → GLn−1(C) such
that ρ/Sn

and ρ/Bn
are both irreducible. Then both representations are equiv-

alent to the extension of the reduced Burau representation ϕ̂B(z) restricted
to Sn and Bn respectively, up to tensoring by a one-dimensional representa-
tion (See Theorem 3.2, Proposition 3.2). Without loss of generality, we might
consider an equivalent representation of ρ and we still denote the obtained
representation by ρ. More precisely, we write the images under the represen-
tation ρ of the generators αi and σi as follows: ρ(αi) = y1K

−1ϕ̂B(z1)(αi)K

and ρ(σi) = y2ϕ̂B(z2)(σi), where y1, y2, z1 and z2 are non zero complex num-
bers, 1 ≤ i ≤ n− 1 and K is an (n− 1)× (n− 1) invertible matrix. For n ≥ 7,
we take into account that general form of αi and σi under ρ. We make compu-
tations for the 3× 3 main blocks in them and we use mathematical induction
on n. We consider the generators of S4 and B4 as a reference, where the ma-
trices of the generators αi and σi under ρ are equivalent to ϕ̂B(z) restricted
to Sn and Bn respectively.

By Lemma 4.1, the matrix K is block lower triangular, and so consider

K =

a b 0
d e 0
g h i

 , where a, b, d, e, g, h, i ∈ C, i ̸= 0, ae − bd ̸= 0. The images

of the generators αi and σi under ϕ̂B(z) are

α1 7→

0 1 0
1 0 0
0 0 1

 , α2 7→

1 0 0
0 0 1
0 1 0

 , α3 7→

 1 0 0
0 1 0
−1 −1 −1

 ,
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and

σ1 7→

1− z−1 1 0
z−1 0 0
0 0 1

 , σ2 7→

1 0 0
0 1− z−1 1
0 z−1 0

 ,

σ3 7→

 1 0 0
0 1 0
−1 −1 −z−1

 .

Applying the relations between the generators ρ(αi) and ρ(σi) (Definition
2.5), we obtain equations in seven unknowns. Using Mathematica software to
simplify computations, we get that the matrix K is a constant matrix. This
implies that ρ is equivalent to ϕ̂B(z). We now use mathematical induction on
n ≥ 7.

We assume that representations ϕ̂B/Bn−1
and ϕ̂B/Sn−1

satisfy the relations
in Cn−1 implies that the (n − 2) × (n − 2) matrix K involved in conjugating

ϕ̂B/Sn−1
is the constant matrix. We now prove that this result remains true

for our representation ρ : Cn → GLn−1(C), where the restriction to Sn and

Bn are ϕ̂B/Bn
and ϕ̂B/Sn

. Under the hypothesis, both representations ρSn

and ρBn are equivalent to ϕ̂B(z) restricted to Sn and Bn respectively. We
consider the restrictions of the representation ρ on Sn−1 and Bn−1. It is easy
to see that the representation ρ/Bn−1

of degree n − 1 is reducible because
the row vector (1, 1, . . . , 1) is fixed under the representation. In this case, we

write the generator σi of ρ/Bn
, i = 1, 2, . . . , n − 2, as

(
σ′i 0
∗ 1

)
for a choice

of a basis, where σ′i = ϕ̂B/Bn−1
(σi) of degree n − 2. It is worth saying that

this representation of σi, given by block lower triangular matrices, is obtained
with respect to some basis; That is, all our representations are defined up to
equivalence. Similarly, the representation ρ/Sn−1

is reducible. By the result of
Maschke (Theorem 3.6), the complex representation of the finite group Sn is
semi-simple, that is equivalent to a direct sum of a representation of degree
n− 2 and a one-dimensional representation. So, with respect to a basis, each

αi under ρ/Sn−1
, i = 1, 2, . . . , n− 2, is written as

(
α′
i 0
0 1

)
, where α′

i is similar

to ϕ̂B/Sn−1
(αi) of degree n− 2.

Upon conjugation of the matrices αi and σi, we still call the matrix involved
in conjugating the matrices αi by K, which is assumed to be block lower
triangular by Lemma 4.1. Writing the relations between the generators of Cn,
αi and σi, for 1 ≤ i ≤ n−1, we perform multiplication of block lower triangular
matrices to obtain the same relations as in Cn−1, involving the generators
α1, . . . , αn−2 and the generators σ1, . . . , σn−2 . For instance, considering the
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left hand side of the relation in Cn, ρ(αi)ρ(σj) = ρ(σj)ρ(αi), |i − j| ≥ 2, we
obtain(

K ′−1 0
∗ c−1

)(
α′
i 0
0 1

)(
K ′ 0
∗ c

)(
σ′j 0

∗ 1

)
=

(
K ′−1α′

iK
′σ′j 0

∗ 1

)
. Similarly,

the right hand side of the relation is

(
σ′jK

′−1α′
iK

′ 0

∗ 1

)
.

Likewise, all the other relations in Cn−1 are obtained in this way. We

remark that σ′j = ϕ̂B/Bn−1
(σj) and α′

i = ϕ̂B/Sn−1
(αi). Having the relations

satisfied in Cn−1, this implies that K ′ is a block lower triangular matrix by
Lemma 4.1. By induction, since the result is true for Cn−1, we conclude that
K ′ is the constant matrix. This means that K ′ = dIn−2, where d ∈ C∗. This
means that the (n− 1)× (n− 1) matrix K is a block lower triangular matrix

of the form

(
dIn−2 0
∗ c

)
. On the other hand, we use the remaining relations

in Cn involving the generators, not used so far, namely αn−1 and σn−1. Direct
calculations show that d = c and the entries off the main diagonal are zeros,
and so K = cIn−1. 2

For n = 3, we prove a result similar to that of Theorem 4.1 when r = n−1.

Theorem 4.2. Let ρ : C3 7→ GL2(C) be an irreducible representation.
Assume that ρ/S3

and ρ/B3
are both irreducible. Then we have non trivial rep-

resentations, among them is the extension of the reduced Burau representation
ϕ̂B(z), where z ∈ C∗.

P r o o f. By a result of Formanek [4], Theorem 3.2 remains true for n = 3.

This means that ρ/B3
is equivalent to ϕ̂B/B3

, up to tensoring by 1-dimensional

representation. On the other hand, ρ/S3
is equivalent to ϕ̂B/S3

. Consider a
matrix K, which is used to conjugate the representation ρ/S3

. Thus, we let

K =

(
a b
c d

)
, where a, b, c, d ∈ C and ad− bc ̸= 0. In this case, we have:

σ1 7→
(
1− t−1 1
t−1 0

)
, σ2 7→

(
1 0
−1 −t−1

)
,

α1 7→
(
0 1
1 0

)
, and α2 7→

(
1 0
−1 −1

)
.

Using the only two relations: σ1σ2Kα1K
−1 = Kα2K

−1σ1σ2 and

σ1Kα2α1K
−1 = Kα2α1K

−1σ2, we get that K =

(
−c+ d −c
c d

)
. Thus, we
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see that we have infinite solutions if d2 − cd + c2 ̸= 0. If we let c = 0, then
K = dI2, where d ̸= 0. This gives us the extension of the reduced Burau
representation ϕ̂B(z), for z ∈ C∗. 2

5. Conclusion

As E. Formanek gave classification for irreducible complex representations
ρ : Bn 7→ GLr(C), n ≥ 7 and 2 ≤ r ≤ n− 1, we extend this work to the group
of conjugating automorphisms of a free group Cn, namely Cn 7→ GLr(C), for
specific values of r; more precisely, when 2 ≤ r ≤ n− 3. We also show that if
r = n− 1 and the restrictions of ρ to Sn and Bn are both irreducible then the
representation ρ is equivalent to the extension of the Burau representation, up
to tensoring by one-dimensional representation.
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