DOI: 10.12732/ijam.v37i5.4
IRREDUCIBLE REPRESENTATIONS
OF THE GROUP OF CONJUGATING
AUTOMORPHISMS OF A FREE GROUP
Mohamad N. Nasser 1, Rayane G. Abou Nasser Al Yaf 2,
Mohammad N. Abdulrahim 3,§
1,2,3 Department of Mathematics and Computer Science
Beirut Arab University
P.O. Box 11-5020, Beirut, LEBANON
Abstract. As E. Formanek has characterized low dimensional representations of the braid group
Bn, we extend these representations to the group of conjugating automorphisms Cn, when n \geq 5. We then give a classification for irreducible representations of Cn in dimensions of at most
n-3. Next, we determine representations of Cn in dimension n-1 when each of the restrictions to the symmetric group Sn and the braid group Bn are irreducible.
How
to cite this paper?
DOI: 10.12732/ijam.v37i5.4
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 5
References
[1] M. Abdulrahim, M. Al-Tahan, On a class of irreducible representations of the braid group
Bn, Int. J. Appl. Math., 23, No 4 (2010), 681-591.
[2] V. Bardakov, The structure of the group of conjugating automorphisms and the linear representation of the braid groups of some manifolds, Algebra i Logika, 42, No 5 (2003), 515-541.
[3] W. Burau, Uber Zopfgruppen und gleichsinnig verdrillte Verkettungen, In Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 11, No 1 (1935), 179-186.
[4] E. Formanek, Braid group representations of low degree, Proceedings of the London Mathematical Society, 3, No 2 (1996), 279-322.
[5] W. Fulton, J. Harris, Representation Theory A First Course, Springer-Verlag, New York (1991).
[6] M. Nasser and M. Abdulrahim, On the irreducibility of the extensions of Burau and Gassner representations, Annali dell’universita’di Ferrara, 67, No 2 (2021), 415-434.
[7] R. Rasala, On the minimal degrees of characters of Sn, Journal of Algebra 45, No 1 (1977), 132-181.
[8] A. Savushkina, On the group of conjugating automorphisms of a free group, Mathematical Notes, 60, No 1 (1996), 68-80.
[9] E. Stein, J. Birman, J. Mather et al., Braids, Links, and Mapping Class Groups, Princeton University Press, 82 (1974).
[10] I. Sysoeva, Dimension n representations of the braid group on n strings, Journal of Algebra, 243, No 2 (2001), 518-538.
[11] I. Sysoeva, Irreducible representations of Braid group Bn of dimension n + 1, Journal of Group Theory, 24, No 1 (2021), 39-78.
[12] D. Tong, S. Yang and Z. Ma, A new class of representations of Braid groups, Comm. Theoret. Phys., 26, No 4 (1996), 483-486.
o Home
o Contents
(c) 2024, Diogenes Co, Ltd.; https://www.diogenes.bg/ijam/