IJAM: Volume 37, No. 5 (2024)

DOI: 10.12732/ijam.v37i5.1

 

FRACTIONAL CALCULUS APPROACH TO

BIOREACTION MODELING

 

Emilia Bazhlekova, Ivan Bazhlekov

 

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Block 8

Sofia - 1113, BULGARIA

 

Abstract.  In this work, the application of fractional calculus to mathematical modeling

of bioreactions is analyzed. The proposed models, employing fractional order operators in time, are generalizations of the classical bioreactor model, which consists of a system of nonlinear ODEs. Different ways for introducing time-fractional operators in the classical model are discussed. It is shown that formal “fractionalization” can lead to physically unacceptable models

and some solutions to overcome this problem are proposed. To evaluate the ability of the considered fractional order models to correctly reproduce the expected behavior of the system, numerical experiments are performed, based on a generalization of the fractional Adams method.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i5.1
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 5

References

 

[1] W. Ahmad, N. Abdel-Jabbar, Modeling and simulation of a fractional order bioreactor system, IFAC Proceedings Volumes, 39 (2006), 260–264.

[2] R. Alt, S. Markov, Theoretical and computational studies of some bioreactor models, Comput. Math. Appl., 64 (2012), 350–360.

[3] T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, London (2014).

[4] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore (2012).

[5] I. Bazhlekov, E. Bazhlekova, Fractional derivative modeling of bioreaction diffusion processes, AIP Conf. Proceedings, 2333 (2020), 060006; https://doi.org/10.1063/5.0041611.

[6] I. Bazhlekov, E. Bazhlekova, A predictor-corrector numerical approach to equations with general fractional derivative, Int. J. Appl. Math., 35, No 5 (2022), 693-709; https://doi.org/10.12732/ijam.v35i5.5.

[7] E. Bazhlekova, Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives, Fract. Calc. Appl. Anal., 24, No 1 (2021),
88–111; https://doi.org/10.1515/fca-2021-0005.

[8] S. Das, R.K. Calay, R. Chowdhury, Parametric sensitivity of CSTBRs for Lactobacillus, Case i: Normalized sensitivity analysis, Chem. Engineering, 4 (2020), 41.

[9] K. Diethelm, Properties of the solutions to “fractionalized” ODE systems, with applications to processes arising in the life sciences. In: D. Spasic, N. Grahovac, M. Zigic, M. Rapaic, T. Atanackovic (Eds.) Proceedings of the Internat. Conf. Fractional Differentiation and its Applications 2016, Vol. 1., Faculty of Technical Sciences, Novi Sad (2016), 32–44.

[10] K. Diethelm, N. Ford, A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3–22.

[11] K. Diethelm, N. Ford, A. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52.

[12] M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative. Sci. Rep., 3 (2013), 3431.

[13] A. Fernandez, C. Kurt, M. Ozarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional calculus operators. Comp. Appl. Math. 39 (2020), Art. # 200.

[14] M. Gerber, R. Span, An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas. In: Proceedings of the IGRC, Paris (2008).

[15] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2nd Ed., Springer, Berlin-Heidelberg (2020).

[16] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri, F. Mainardi (Eds.) Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien-New York (1997), 223–276.

[17] S.B. Hadid, Y. Luchko, An operational method for solving fractional differential equations of an arbitrary real order. Panam. Math. J. 6, No 1 (1996), 57–73.

[18] J. Monod, The growth of bacterial cultures, Annual Reviews of Microbiology, 3 (1949) 371–394.

[19] H. Smith, P. Waltman, The Theory of the Chemostat - Dynamics of Microbial Competition, Cambridge University Press (1995).

[20] V.R. Suvandzhieva, Mathematical modeling of bioprocesses with the use of fractional order derivatives, Biomath Communications, 8 (2021), 1–48; ttps://doi.org/10.11145/bmc.2021.04.017.

[21] R. Toledo-Hernandez, V. Rico-Ramirez, G.A. Iglesias-Silva, U.M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemical Engineering Science, 117 (2014), 217–228.

 

·                IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/