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Abstract

This article presents a novel algorithm that can list all of the N-element
permutations in a straightforward and easily automated manner. If N is
fed as input, the algorithm will find all the permutations of N elements using
modulo arithmetic, which makes it different from earlier algorithms. We do not
present rigorous mathematical proofs for the algorithm or its time complexity.
Instead, relying on the elementary rules of modulo arithmetic, we provide
intuitive justification of the rather obvious algorithm and numerical examples
to show that it has the time complexity of the order O(N x N!) or simply
O(N!), as expected based on the elementary analysis of the computational
procedure.
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1. Introduction

Suppose we have N elements and want to list all possible ways to arrange
them in a definite order. For instance, we can have billiard balls marked with
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consequent natural numbers: 1,2,3,..., N, or we can have them in N different
colors. It is common knowledge that we can arrange such a set in N! different
ways. However, listing all those permutations may be challenging, especially
when N increases even over modest quantities. This article presents a novel
algorithm that can identify all the N-element simple permutations (meaning
the permutations of all the NV elements).

Heap’s algorithm’s [1] critical characteristic is its efficiency regarding the
minimal element swaps needed to create all permutations. It operates in place
without requiring additional storage space for storing permutations, making
it space-efficient. Its overall time complexity is O(N x N!) or simply O(N!).

Knuth’s recursive approach [2] for generating permutations is based on
systematically swapping elements to explore all possible arrangements. The
overall time complexity is also O(N x N!) or simply O(N!).

Johnson-Trotter algorithm [3], 4] is another approach for generating permu-
tations with the same overall time complexity. Its advantage lies in efficiently
generating permutations with fewer changes than other algorithms.

The Steinhaus—Johnson—Trotter algorithm [5], like the Johnson-Trotter
algorithm, focuses on generating permutations that avoid consecutive ascents
or descents. It, too, has the time complexity of O(N!).

Lexicographic ordering [6] is a method of arranging permutations in the or-
der defined by lexicography. This algorithm exhibits the same time complexity
as all the ones mentioned above.

2. The Algorithm

First, we will establish the notation rule for different elements to permute.
We will mark them with natural numbers. Let us start from the most ele-
mentary permutation: a single element that we decided to name ”1”. So, we
begin with:

1

Let us introduce the next element, ”2”, to the left and mark its addition
with the symbol ”|”:

211

Let us add 1 to both elements but in modulo 2. However, because we
have started to count from 1 instead of zero, we need to prepare the “name
numbers” and then carry on with the procedure. In our example, we need
to perform the following steps: First, subtract 1 from both elements, then
add 1 in modulo 2 arithmetic to both elements, and then add back 1 to all
the elements to return to the original natural-number notation. (Not working



AN ALGORITHM FOR LISTING ALL ... 481

with the number 0 is a matter of convenience; for example, we may not like
zeros but only natural numbers. Then, we must perform these trivial steps.)

Here is the complete sequence of these elementary operations performed
on the sequence 2 | 1:

e Subtracting 1 from both: 1 | 0
e Adding 1 (mod 2) to both: 0| 1
e Adding back 1 to both: 1 | 2

The last line contains the new permutation, and now the set of all two-

element permutations is complete:
2 1
1 2
Following the same logic, we can append this complete set of permutations for
N = 2 with the new element to start constructing the list of permutations for
N =3:

312 1

311 2

Then, subtract 1 from all the numbers and make two additions in modulo
3 arithmetic, by 1 and 2, to generate new rows. We will keep the starting
two lines and add all the newly generated ones. Finally, after adding back 1
to return to natural numbers, we will get the complete set of three-element
permutations. The whole sequence reads:

e Subtract 1:

211 0

210 1
e Add 1 (mod 3):

02 1

01 2
e Add 2 (mod 3):

|0 2

|2 0
e Add back 1 to all:

3 2 1

3 1 2

1 3 2

1 2 3

21 3

2 31
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The next step follows the same procedure:

413 2 1
413 1 2
411 3 2 (¥
411 2 3
412 1 3
412 3 1

After trivial subtraction of 1 from all the numbers, we add 1, then 2, and
then 3, in modulo 4 arithmetic, to all of the values from the above list, and
finally add 1 back to every number obtained. The number of permutations
will now be increased by a factor of 4. In principle, this algorithm can be
iterated forever.

We can effortlessly extract any lower-order M permutation table directly
from the N-th order one, M < N, by taking the upper-right corner of the
N-order matrix, which has the dimensions of M! rows and M columns.

We should demonstrate why this algorithm works with N — 1 stepwise
additions in modulo N arithmetic. A proper proof would stem directly from
the basic properties of modular arithmetic [7], but we shall leave it to the
reader. The following properties apply for shifting the elements by more than
zero and less than N steps:

e None of the elements is mapped back onto itself.

e Shifting the same element by different numbers of steps maps it to
different elements.

e Different elements, when shifted by the same number of steps, map to
other different elements.

Now, recall (). In the first line, we have:
41321
After subtracting 1 from all the elements, it becomes:
31210

It is a 4-permutation as it has four distinct elements. Adding any natural
number smaller than 4 to all of them, for example, 1, in modulo 4 arithmetic
by necessity generates another legitimate permutation, in this case, 0 3 2 1.
It happens for any eligible step sizes (1,2,3). Since in modulo 4, there are
4 —1 = 3 eligible step sizes, we can produce 6 x 3 = 18 additional lines and list
them below those already printed in (*). All of them are sure to be legitimate
permutations. In this way, we have generated a total of 6 + 18 = 24 = 4!
permutations.

If we have more than ten elements (or more than nine if we do not use
the number 0), we may need to replace numbers larger than 9 with suitable
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”symbolic numbers.” The most obvious way is to work in the number system
base corresponding to NNV.

3. Time Complexity

If the N-1-permutations are already known, one must at least append N —1
new elements to the already known permutations, add 1, then 2, then 3, ...,
then NV —1 (mod N) to each element in each of the such created permutations,
and store all the permutations created.

Those actions require the number of operations proportionate to, respec-
tively: N—1; (N=1)!x N x (N —1) = N!x (N —1); and N! x (N —1). For
large N, the latter two tend to N x N! and become much larger than N — 1.
Therefore, the computation load increases with N x N!.

To test this, we made a short Matlab script to repeat the algorithm many
times for each N < 12, record the computation time in milliseconds, and
compute the average. The relationship between average computing time and
N x N! was almost perfectly linear, with Pearson’s R? larger than 0.99999,
which justifies the case at least for N < 12. The regression between average
computing time and N! was slightly worse, with R? larger than 0.99996.

4. Conclusions

In this article, we presented an algorithm for listing all the permutations of
N elements using modular arithmetic. We also deduced that the algorithm’s
time complexity is O(N x N!), which we tested numerically for N < 12.
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