IJAM: Volume 37, No. 4 (2024)
DOI: 10.12732/ijam.v37i4.7
AN ALGORITHM FOR LISTING
ALL
PERMUTATIONS OF N
ELEMENTS
USING MODULO ARITHMETIC
Dubravko Sabolic
University of Zagreb, FER
Unska 3
10000 Zagreb, CROATIA
Abstract.
This
article presents a novel algorithm that can list all of the N-element permutations
in a straightforward and easily automated manner. If N is fed as input, the
algorithm will find all the permutations of N elements using modulo arithmetic,
which makes it different from earlier algorithms. We do not present rigorous
mathematical proofs for the algorithm or its time comple-xity. Instead, relying
on the elementary rules of modulo arithmetic, we provide intuitive
justification of the rather obvious algorithm and numerical examples to show
that it has the time complexity of the order O(N! x N!) or simply O(N!), as
expected based on the elementary analysis of the computational procedure.
Download paper from here
How
to cite this paper?
DOI: 10.12732/ijam.v37i4.7
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 4
References
[1] B.R. Heap, Permutations by Interchanges,
Communications of the ACM, 6 (1963), 293-298.
[2] D.E. Knuth, The Art of Computer Programming,
Volume 1, Addison-Wesley Professional, Boston (1997).
[3] S.M. Johnson, The problem of arranging alliances,
Proceedings of the American Mathema-tical Society, 14 (1963), 799-806.
[4] H.F. Trotter, Perm groups and algebras in
complexity theory, Algorithmica, 1 (1986), 393-413.
[5] R. Sedgewick, Permutation generation methods,
Computing Surveys, 9 (1977), 137-164.
[6] R. Sedgewick and K. Wayne, Algorithms,
Addison-Wesley Professional, Boston (2011).
[7] E. Lehman, F.T. Leighton and A.R. Meyer,
Mathematics for Computer Science, Retrieved 1 Dec. 2023. MIT OpenCourseWare,
URL: https://ocw.mit.edu/resources/res-18-001-mathematics-for-computer-science-fall-2005/.
[1] Braaksma, B.L.J.
Asymptotic expansions and analytic continuation for a class of Barnes
integrals. Compositio Math., 15, 239–341 (1962–1964).
[2] Buschman, R.G.;
Srivastava, H.M. The H functions associated with a certain class of Feynman
integrals. J. Phys. A: Math. Gen., 23, 4707–4710 (1990).
[3] Erdelyi, A. On some
functional transformations. Univ. Politec. Torino Rend. Semin. Math., 10,
217–234 (1950–1951).
[4] Erdelyi, A. (Ed.), Higher
Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London
(1953–1955).
[5] Fox, Ch. The G and
H-functions as symmetric Fourier kernels. Trans. Amer. Math. Soc., 98, 395–429
(1961).
[6] Gelfond, A.O.; Leontiev,
A.F. On a generalization of the Fourier series (In Russian). Mat. Sbornik, 29
(71), 477–500 (1951).
[7] Inayat-Hussain, A.A. New
properties of hypergeometric series derivable from Feynman integrals: II. A
generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128 (1987).
[8] Kalla, S.L. Operators of
fractional integration. In: Lecture Notes in Math., 798, 258–280 (1980).
[9] Karp, D. A note on Fox’s
H-function in the light of Braaksma’s results, Ch.12 in: Special Functions and
Analysis of Differential Equations (Eds. P. Agarwal, R.P. Agarwal, M.
Ruzhansky). Chapman and Hall/ CRC, N. York (2020), 12 pp.;
http://arxiv.org/abs/1904.10651v1.
[10] Kilbas, A.A.; Saigo, M.
H-Transforms: Theory and Applications. Ser. on Analytic Methods and Special
Functions, 9, CRC Press, Boca Raton (2004).
[11] Kilbas, A.A.; Srivastava,
H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential
Equations; Elsevier, Amsterdam etc. (2006).
[12] Kiryakova, V. Generalized
Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York,
1994
[13] Kiryakova, V.
Gel’fond-Leont’ev integration operators of fractional (multi-)order generated
by some special functions. AIP Conference Proc., 2048, # 050016, 10 pp. (2018);
doi:10.1063/1.5082115.
[14] Kiryakova, V. Generalized
fractional calculus operators with special functions. In: Handbook of
Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110. De Gruyter
(2019); doi:10.1515/9783110571622-004.
[15] Kiryakova, V. Unified
approach to fractional calculus images of special functions – A survey.
Mathematics, 8, Art. 2260; 35 pp. (2020), doi:10.3390/math8122260.
[16] Kiryakova, V. A guide to
special functions in fractional calculus. Mathematics, 9, No 1, Art. 106, 40
pp. (2021); doi:10.3390/math9010106.
[17] Kiryakova, V.; Luchko,
Yu. Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators. Central
Eur. J. Physics, 11, 1314–1336 (2013); doi:10.2478/s11534-013-0217-1.
[18] Kiryakova, V.;
Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdelyi-Kober fractional
integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le
Roy type. Intern. J. Appl. Math., 36, No 5, 605–623 (2023);
doi:10.12732/ijam.v36i5.2.
[19] Kiryakova, V.;
Paneva-Konovska, J. Going next after “A Guide to Special Functions in
Fractional Calculus”: A discussion survey. Mathematics, 12, Art. 319, 39 pp.
(2024); https://doi.org/10.3390/math12020319.
[20] Kober, H. On fractional
integrals and derivatives. Quart. J. Math. Oxford, ll,193–211 (1940).
[21] Le Roy, E. Valeurs
asymptotiques de certaines series procedant suivant les puissances ent`eres et
positives d’une variable reelle (In French). Darboux Bull. (2) 24, 245–268
(1900).
[22] Marichev, O.I. Handbook
of Integral Transforms of Higher Transcendental Functions, Theory and
Algorithmic Tables. Ellis Horwood, Chichester (1983); Transl. from Russian Ed.,
Method of Evaluation of Integrals of Special Functions (In Russian). Nauka i
Teknika, Minsk (1978).
[23] Meijer, C.S. On the
G-function. Indagationes Math., 8, 124–134; 213–225; 312–324; 391–400; 468–475;
595–602; 661–670; 713–723 (1946).
[24] Mittag-Leffler, M. G.:
Sur la nouvelle function E_{\alpha} (x). Comp. Rend. Acad. Sci. Paris (Ser.5),
137, 554–558 (1903).
[25] Paneva-Konovska, J. From
Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in
Them and Convergence. World Scientific Publ., London (2016); doi:10.1142/q0026.
[26] Paneva-Konovska, J.
Prabhakar function of Le Roy type: A set of results in the complex plane.
Fract. Calc. Appl. Anal., 26, No 1, 32–53 (2023); doi:10.1007/s13540-022-00116-1.
[27] Paneva-Konovska, J., Kiryakova,
V. The generalized Fox-Wright Function: Laplace transform, Erdelyi-Kober
fractional Integral, role in fractional calculus. Mathematics,
12,
Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.
[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.;
Dubatovskaya, M. Laplace transform (Part 1) of the multi-index
Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36,
No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.
[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I.
Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci.
Publ., N. York-London-Paris-Tokyo, etc. (1992).
[30] Rathie, A. A new generalization of the
generalized hypergeometric functions. Le Matematiche LII, No II, 297–310
(1997).
[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le
Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.
[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.
Fractional Integrals and Derivatives: Theory and Applications. Gordon and
Breach, Switzerland etc. (1993).
[33] Slater, L.J. Generalized Hypergeometric
Functions. Cambridge Univ. Press, London-N. York (1966).
[34] Sneddon, I.N. The use in mathematical analysis of
Erdelyi-Kober operators and of some of their applications. In: Fractional
Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457),
Springer-Verlag, New York, 37–79 (1975).
[35] Vellaisamy, P.; Kataria, K.K. The I-function
distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian
Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.
[36] Yakubovich, S.; Luchko, Y. The Hypergeometric
Approach to Integral Transforms and Convolutions. Kluwer (1994).
·
IJAM
o
Home
o
Contents
o
Editorial Board
(c) 2024, Diogenes
Co, Ltd.; https://www.diogenes.bg/ijam/