International Journal of Applied Mathematics

Volume 37 No. 4 2024, 461477
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v37i4.6

GENERALIZED LINDLEY-POISSON DISTRIBUTION
AND ITS APPLICATIONS

M. E. Ghitany %, A. Asgharzadeh 2, A. Saadati Nik 2

! Department of Statistics and Operations Research
Faculty of Science, Kuwait University, KUWAIT
e-mail: me.ghitany@ku.edu.kw
2 Department of Statistics

University of Mazandaran, Babolsar, IRAN

Abstract

In this paper, we consider a survival model of competing risks where the
number of causes of failure is random, M, and only the minimum of the sur-
vival times due to various causes, Y = min(X1, Xs,...,Xys), is observed.
Considering the distribution of M as zero-truncated Poisson and the baseline
distribution of X as generalized Lindley, a generalized Lindley-Poisson dis-
tribution is obtained. The structural properties of the proposed model are
studied. The method of maximum likelihood is used to estimate the param-
eters of the proposed model. Simulation studies are carried out to study the
performance of the estimators. Two real data sets are analyzed and it is shown
that the proposed model fits better than some of the existing models.

MSC 2020: 62F10, 62E20

Key Words and Phrases: generalized Lindley distribution; zero-trunca-
ted Poisson distribution; compounding; maximum likelihood

Received: January 2, 2024 © 2024 Diogenes Co., Sofia



462 M.E. Ghitany, A. Asgharzadeh, A. Saadati Nik

1. Introduction

In survival analysis, the complete survival times X1, Xo, ..., Xjs are usually
not available. However, Y = min(Xy, Xs, ..., X3s) is observed. This situation
arises in competing risk theory where X, Xo, ..., X3; are the survival times
due to different causes of failure and only Y is observed along with the cause
of failure. The number of observations is unknown and so M is considered as
a discrete random variable with support {1,2,...}.

In this paper, we consider a random sample where only X is observed and
M is considered as random. More specifically, let X1, Xo, ..., X3s be a random
sample of size M from a base distribution with survival function (s.f.) Sx(z).
Then, the conditional survival function of Y is given by

SY|M(y’m) = [Sx()]".
The unconditional survival function of Y is given by
[e.9]

Sy(y) = > [Sx)]™ P(M =m)

m=1
= Gu(Sx(y), (1)

where Gpr(s) =D o ;8™ P(M =m), 0 < s < 1, is the probability generating
function (p.g.f.) of M.

The model above with s.f. can be interpreted as a proportional hazard
model whose hazard rate is given by

hy i (y|M) = M hx(y),

where hy (z) = —-& log Sx(z) is the baseline hazard rate function (h.r.f.) and
M is the proportionality factor, whence in this case is random and has a
discrete distribution. This is analogous to the proportional hazard continuous
frailty model, see [I1].

Various distributions of X and M have been considered in the literature.
For example, [2], [16], [20], [6], [8], and [5] have considered the baseline distri-
bution of X as exponential and the distribution of M as geometric, Poisson,
logarithmic, power series, Conway-Maxwell-Poisson, and Poisson-Lindley, re-
spectively. Also, [18], [12] [13], [14], and [3] have considered the baseline
distribution of X as Weibull and the distribution of M as power series, gen-
eralized Poisson, Conway-Maxwell-Poisson, Bessel, and generalized Sibuya,
respectively. In addition, [I0] and [2I] have considered the baseline distribu-
tion of X as Lindley and the distribution of M as Poisson and power series,
respectively. The paper [19] has considered the baseline distribution of X as
exponentiated power Lindley and the distribution of M as Poisson.

In the present paper, we consider a model with baseline distribution as two-
parameter generalized Lindley and the distribution of M as (zero-truncated)
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Poisson giving rise to a three parameter model. The hazard rate function of
this model has monotone and non-monotone shapes.

The contents of this paper are organized as follows. Section 2 contains the
development of the generalized Lindley-Poisson distribution and its structural
properties. Maximum likelihood estimation of the model’s parameters is pre-
sented in Section 3. Simulation studies are carried out in Section 4 to examine
the performance of the estimators. Two real data applications are presented
in Section 5. Finally, some conclusions and comments are provided in Section

6.

2. The model and its properties

Let the random variable M follows zero-truncated Poisson distribution
with probability mass function (p.m.f.)

gm
P(M—m)—m, 'Tn—].7273,7 9>0,
and p.g.f.
Os -1
GM(S)Z;i_l, 0<s<1, 6>0. (2)

The baseline distribution of X is assumed to have a two-parameter gener-
alized Lindley distribution with p.d.f.
2

fx(x) = T (1+ ay)e ™, x>0, a,A>0,
and s.f.
Ol)\ Y
Sx(z) = 1+my e M, x>0, aA>0. (3)

Using , , , the s.f. of Y is given by

Sy(y) = Gu(Sx(y)
69(1+ﬁ7’\ay)e_ky 1

= 69_1 y y>0, Oé,)\,0>0-

2.1. Probability density function. For all y,a, A\,0 > 0, the p.d.f. of Y is
given by

ly) = =S
0 )\2 A 0(14+-92
= 1 -y ( +>\+o¢y) 4
(e —1)(\+ «a) (1+ay)e™ e )
The distribution with p.d.f. will be called generalized Lindley-Poisson,
denoted by GLP(a, \,0). Note that when o = 1, we obtain the Lindley-
Poisson distribution introduced by [10].

e MY
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The following theorem gives sufficient conditions for all possible shapes of
the p.d.f. of the GLP distribution.

THEOREM 2.1. fy(y) is decreasing (unimodal) if \2(1 + 0) > a? (A\?(1 +
0) < a?) with

Proof. Let
&(y) = log fy (y) = Const + log(1 + ay) — Ay + 9(1 +

oA g
A +ay)e ’

The first derivative of £(y) is

ooy dlogfy(y) e Mgl(y)
£ly) = dy At a1+ ay)’

where
g(y) = eM(a+ Na — May +1)] — 0\ (ay + 1)2.
Clearly, the sign of &’(y) is that of g(y). The function g(y) is decreasing, since
d(y) = —aXeM(a+ \) + 20\ (ay +1)] < 0.

Since g(0) = @ — A3(1 + 6) and g(o0) = —o0, it follow that g(y) is negative
(changes sign from positive to negative) if g(0) < 0 (if g(0) > 0). That is, if
N (140)>a? (N2(1+0) <a?). O

Figure [If shows the p.d.f. of GLP distribution for selected values of the
parameters «, A, 6.

—a=0.5A=05,6=05 —a=1.0,A=05,06=05

—a=1.0,A=20,06=1.0 —a=05,A=05,0=05

0.4

a=3.0,A=4.0,6=20 a=1.0,A=05,0=05
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FIGURE 1. Probability density function of GLP distribution.
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2.2. Hazard rate function. For all a, A\, > 0, the h.r.f. of Y is given by

hy (y)

with
hy (0) =

A and 0. This figure shows that the h.r.f.

fy(y)/Sy (y)

0N (1+ay) e Hliraa)e™

A+ o

0 e o \2

R ) o

(e — 1A+ a)’
Figure [2| shows the h.r.f. of GLP distribution for selected values of «,

can be decreasing, increasing,
decreasing-increasing (bathtub), or increasing-decreasing-increasing shape.

o
. — a=0.007,A=04,0=1.0
- — @=0.0051=03,0=1.0
< — a=0003,A=0.2,0=1.0
o) a=0.001,1=05,6=1.0 o
-— © _| kol
s S e
o e}
) =4
IS g
c 34 <
I ° ¥ T
N K
o
o
s
T T T T T T
0 2 4 6 8 10
y
o
° ]
o
o
o |
g © o
& 3
@ [
'E ~ ] -E
c @ ©
N I
I o | — 0=10,1=40,0=04 T
@ — @=151=40,0=06
o | —— @=20,1=40,0=08
© 0=25,1=40,0=10
<
ha
T T T T T T T
0 1 2 3 4 5 6

4.0

35

3.0

25

2.0

2.0

15

1.0

0.5

0.0

9

hy(OO) =\

— ®=1.0,1=4.0,6=0.1

— ®=20,1=40,6=02
— @=30,1=4.0,6=03

«=4.0,1=4.0,6=02

— 0=20,1=10,6=18
— a=251=156=12
— a=20,1=10,06=14

0=20,1=156=18

T T T T T
0 2 4 6 8

FIGURE 2. Hazard rate function of GLP distribution.
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2.3. Quantile function. The following theorem gives explicit expression for
the quantile function of the GLP distribution.

THEOREM 2.2. For any a, A\,0 > 0 and 0 < ¢ < 1, the quantile function
of GLP(a, A\, 0) distribution is given by

_ 1
a\

Qy(q)

1+ XM a log(e?(1—q)+q)
—a—\—« W,l ( el+/\/a . 7 ,

where W_1(-) denotes the negative branch of the Lambert W function.

P r oo f. The quantile function is the solution in y, of the equation 1 —
Sy (yq) = q for 0 < ¢ < 1. That is, the solution of

log (e?(1 - q) + q)
0

14+ X a+Xyg) e MY = (1+ M)

After multiplying both sides of this equation by — e~(1+/®) we obtain W (z) eV (?)
= z, where

L+ Xa  log(e?(1—q)+q)

Since, 1+ A/a + Ay > 1 and z € [—1,0), it follows that
W_oi(z) = = L+ A a+ A y,).

That is y, = 2 [~a—A—a W_q(z)]. O

Remarks:

(1) Since —1 < 2 < 0, it follows that W_1(2) is unique, see [7], which
implies that Qy(¢) is also unique.

(2) The median of GLP distribution is given by Qy (0.5)

(3) For a =1,

Qvlg) =+ [—1—)\— W <_ 1“'10g(66(1‘-’>“—’))],

b 61+)\ 0

which is the quantile function of Lindley-Poisson distribution, see [10].
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2.4. Moments and associated measures. If Y ~ GLP(a, A, 0), then the
rth moment of Y is given by

p=EY") = 7”/0 y ' Sy(y) dy

o J
T (k—i—’l”—l)!
= 0 Z Z ¢k, A, 0) W,

where the coefficients c;i (o, A, §) are given by

N I

The mean, variance, skewness and kurtosis measures are:

Mean = uj,
Variance = 5 — 12,
Skewness = Ha = 3pp b+ 2’
o3 ’
L Ay 6 2,/ 3 4
Kurtosis — 14— 403 J;4u fg = S1

TABLE 1. Mean, variance, skewness and kurtosis of GLP distribu-
tion for selected values of the parameters.

l «@ [ A [ 0 [ Mean [ Variance [ Skewness | Kurtosis
0.5]0.5 0.5 | 2.665 6.223 1.789 7.656
1 1.178 1.372 1.940 8.480

10 0.092 0.010 2.189 10.188

1 0.5 1 2.652 5.934 1.840 8.032
1 1.177 1.355 1.978 8.755

10 0.084 0.009 2.390 11.591

2 105 5 1.245 1.477 2.887 19.390
1 0.531 0.332 3.173 22.218

10 0.031 0.002 4.505 40.829
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3. Maximum likelihood estimation

Let y1,y2, - - ., yn be a random sample of size n from GLP distribution with
parameters w = (a, A, ). The log-likelihood function is given by

= log fy (yi;9)
=1

= nflog(h) — log(e? — 1) + 2log(\) — log(A + )]

—|—Zlog(1—i—ozyZ )\Zyz—i-HZ(l—i-fj_y;) e i

i=1

The score vector

_ (0,(0) 9ln(o) ln(o)) '
UM)( do ' oN 00 > ’

has elements

9l (9) _ n Yi vi
oo /\+a+;1+ay, )\—l—a2 ;yl ’
on(6) n(A+2a) "N+ 20 i
A Arta) Zy )\+a Z;<A+a +O‘yl> wie

00 (0) 1 e? - aAyi \
pu— _———_—_— 1 [ yZ.
a0 " (9 1) 7" Z Xra)¢

i=1

The maximum likelihood estimate (MLE) @ of w can be obtained by solving
the system of equations U, (¢) = 0 numerically.

Elements of the Hessian matrix are given by



GENERALIZED LINDLEY-POISSON DISTRIBUTION ... 469

82671(@) n " %2 29)\2 n S
80{2 B (A+a>2_;<1+ayz)2_()\+a)3 ;yze 5
Phalo) _ el a3 0%
ON? AN+ a)? A+ ayp &Y
0(—a® +a*A +3aX + 1) N,
A+ )3 P g
O (o + 202\ + a)?) -
A+ a)? —" ’
2 0
Plulo) _ (1 PG
06? 02 " (ef —1)2
0*n(0) n 0 N
dadN ()\+a)2+()\+a)3;(20‘_)‘()‘+0‘)?/i)yi6 vi,
24, (0) .
0000 (A +a)? ;yl e i,
0%n(0) " (A4 2a .

For large n, the expected information matrix I,,(¢)

i=1

mated by the negative hessian matrix:

Jn(9)

0200 (8)  0%4n(0) 0% (9)]
Oa? Oa O\ Oa 00
020, (8)  0%Un(9) 0% (9)
Oa O ON2 o\ 00
020, (8)  0%n(9) 0% (9)

L Oa 00 o\ 00 002

E[J,(9)] is approxi-

Under mild regularity conditions (see [I7]), the asymptotic distribution
of the MLE ¢ is multivariate normal distribution with mean ¢ and variance-

covariance matrix J,(¢).

4. Simulation study

In this section, we conducted a simulation study to evaluate the perfor-
mance of MLEs of the parameters «, A, 8 of GLP distribution. First, the fol-

lowing algorithm is used to generate a random sample Y7, ..

distribution:

., Y,, from GLP
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(i) Generate U; ~ U(0,1), i=1,...,n;
(i) Fori=1,...,n, set

1 L+ M a log(ef(1-U) +Uh)
V=gl EE )]
where W_1 denotes the negative branch of Lambert function.

The simulation experiment was repeated N = 3,000 times each with sam-
ple size n = 25,50, 75,100, 200, 250 and true parameters
(o, A, 0) = (0.5,0.5,0.5),(0.5,0.5,1),(1,0.5,1). Four quantities were examined
in this Monte Carlo study:

(i) Bias of the MLE » of the parameter v = a, \, 6:
L X
Bias(v) = > (@i —v);

i=1

(ii) Mean-square error of the MLE & of the parameter v = a, A, 0:
| X
MSE(D) = + > (0~ v

i=1

(iii) Coverage probability (CP) of 95% asymptotic confidence interval of
the parameter v = a, A, 0, i.e., the percentage of intervals containing
the true value of v;

(iv) Average width (AW) of 95% confidence intervals of the parameter v =
a, N, 6.

Table 2 presents the biases and MSEs of the estimates which are seen to
be small. This table also shows that the biases can be negative or positive and
the MSEs decrease as the sample size increases.

Table [3| presents the coverage probabilities and average width of 95% con-
fidence intervals of the parameters. This table shows that the coverage prob-
abilities of the confidence intervals are quite close to the nominal level of 95%
and that the average confidence widths decrease as the sample size increases,
as one would expect.
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TABLE 2. Bias and MSE of MLEs of o, A and 6.

[a [ A ] 6 ] n [Bias@) [ Bias(\) | Bias(9) | MSE(@) | MSE()) [ MSE(9) |
05]05]05 0.2499 | -0.0143 | 0.1449 | 0.5179 | 0.0188 | 0.6661
100 | 0.1904 | -0.0210 | 0.1157 | 0.3659 | 0.0124 | 0.5817
150 | 0.1573 | -0.0241 | 0.1345 | 0.2941 | 0.0097 | 0.5629
200 | 0.1242 | -0.0212 | 0.1135 | 0.2317 | 0.0081 | 0.5395
250 | 0.1020 | -0.0216 | 0.0920 | 0.1931 | 0.0069 | 0.4861
05105 1.0 0.1317 | 0.0033 | -0.1826 | 0.4407 | 0.0235 | 0.7289
100 | 0.0765 | -0.0100 | -0.1822 | 0.3097 | 0.0152 | 0.6690
150 | 0.0385 | -0.0153 | -0.1632 | 0.2276 | 0.0121 | 0.6598
200 | 0.0039 | -0.0156 | -0.1906 | 0.1847 | 0.0104 | 0.6158
250 | -0.0133 | -0.0198 | -0.1648 | 0.1644 | 0.0090 | 0.6141
10|05 1.0 20.0582 | 0.0050 | -0.2622 | 0.5442 | 0.0205 | 0.8016
100 | -0.0243 | -0.0058 | -0.2373 | 0.4539 | 0.0145 | 0.7684
150 | -0.0016 | -0.0098 | -0.1625 | 0.4038 | 0.0111 | 0.6937
200 | -0.0202 | -0.0099 | -0.1799 | 0.3580 | 0.0100 | 0.6431
250 | -0.0137 | -0.0090 | -0.1382 | 0.3104 | 0.0088 | 0.6147

TABLE 3. Coverage probability and average width of the 95% Cls
of o, A and 6.

[a [ X] 6] n [CP(e)[CP(N)[CP®) [AW(a) [ AW(N) [ AW(H) |

0.5]0.5]|05 ]| 50 | 0.9426 | 0.9673 | 0.9693 | 4.5945 | 0.7532 | 4.8948
100 | 0.9800 | 0.9336 | 0.9300 | 3.7431 | 0.4538 | 3.2451
150 | 0.9630 | 0.9270 | 0.9426 | 2.0231 | 0.3519 | 2.9816
200 | 0.9566 | 0.9176 | 0.9346 | 1.6829 | 0.2985 | 2.4222
250 | 0.9656 | 0.9240 | 0.9443 | 1.5734 | 0.2639 | 2.3136
0.5]0.5|1.0] 50 | 0.9680 | 0.9346 | 0.9683 | 5.3984 | 0.6419 | 4.6306
100 | 0.9640 | 0.9400 | 0.9536 | 2.2169 | 0.5201 | 4.5320
150 | 0.9620 | 0.9530 | 0.9533 | 1.7792 | 0.5028 | 3.9401
200 | 0.9376 | 0.9540 | 0.9450 | 1.1515 | 0.4613 | 3.7771
250 | 0.9043 | 0.9086 | 0.9436 | 0.9094 | 0.2999 | 3.3715
1.0 [ 0.5 | 1.0 | 50 | 0.9193 | 0.9613 | 0.9436 | 6.0639 | 0.6374 | 4.0840
100 | 0.9633 | 0.9573 | 0.9400 | 4.5565 | 0.5441 | 3.8964
150 | 0.9540 | 0.9453 | 0.9223 | 2.8769 | 0.4685 | 3.1382
200 | 0.9526 | 0.9516 | 0.9260 | 2.3358 | 0.4672 | 3.0899
250 | 0.9590 | 0.9303 | 0.9400 | 2.1272 | 0.3471 | 3.0551

471
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5. Applications

In this section, we present the application of the GLP model to two real
data sets to illustrate its flexibility among a set of competitive models with
the following densities:

(i) Lindley distribution ([9]).

2
Fly;\) = 1+A(1+y)e”y, y>0, \>0.
(ii) Lindley-Poisson distribution ([10]).

BN (1 +y) e 0 (1025 e
f(yﬂ)\79)_ (60—1)(A+1)6 ’
(iii) Weibull distribution

flys e, B) = % (%)a_le_(y/ﬁ)a, y>0, af>0.

(iv) Gamma distribution

f(y;mﬂ):ml)ﬁay

where I'(+) is the gamma function.

y>0, 6,A>0.

O"le’y/ﬁ, y>0, «a,6>0,

To compare the GLP model with the above competing models, we use the
following measures:
(i) Log-likelihood function (log(L));
(ii) Cramér-von Mises (CvM), Anderson-Darling (AD), and Kolmogorov-
Smirnov (KS) test statistics;
(iii) p-value of the KS test.

For a given data set, the selection criterion for the most suitable model is
the one with largest log(L), smallest test statistic and largest p-value of the
K-S test.

5.1. Data set 1: The life of fatigue fracture data. Here, we consider a
data set representing the life of fatigue fracture of Kevlar 373 /epoxy that are
subject to constant pressure at the 90% stress level until all had failed (see
4]):

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566,
0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120,
0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551,
1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375,
1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330,
2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678,
3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.
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The total time on test (TTT) plot ([1]) for this data set is presented in
Figure |3 This plot indicates that the hazard rate function is increasing.

1.0

TT(kin)
0.6 0.8

0.4

0.2

0.0

FiGure 3. TTT plot for data set 1.

For all competing models, Table 4| shows the MLEs, log(L), CvM, AD,
and KS statistics and p-value of the K-S test for data set 1. According to the
selection criterion above, it is clear that GLP model is the most suitable for
first data set. This conclusion is also supported by the graphical displays in

Figure [4]

TABLE 4. Parameter estimates, log-likelihood values and
goodness-of-fit measures for data set 1.

Model MLE log(L) CvM AD KS p-value
GLP & =5.6784 -120.79 0.071 0.420 0.081 0.657
A = 0.3447
0 = 5.6614
LP A = 0.7948 -122.13 0.265 1.475 0.115 0.242
0=9.4x108
Lindley A =0.7947 -123.67 0.265 1.475 0.115 0.242
Weibull a = 1.3256 -122.52 0.135 0.788 0.109 0.295
B =2.1326
Gamma a =1.6412 -122.24 0.112 0.673 0.098 0.431
3 =1.1939




474 M.E. Ghitany, A. Asgharzadeh, A. Saadati Nik
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FI1GURE 4. Diagnostic plots for fitted models for data set 1.

5.2. Data set 2: UK COVID-19 data. The second data represents a
COVID-19 data belong to The United Kingdom of 76 days, from 15 April
to 30 June 2020. These data formed of drought mortality rate. The data are
as follows:

0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751,
0.2845, 0.2992, 0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633,
0.4690, 0.4954, 0.5139, 0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590,
1.0438, 1.0602, 1.1305, 1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017,
1.6083, 1.6324, 1.6998, 1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225,
2.7087, 2.7946, 3.3609, 3.3715, 3.7840, 3.9042, 4.1969, 4.3451, 4.4627, 4.6477, 5.3664,
5.4500, 5.7522, 6.4241, 7.0657, 7.4456, 8.2307, 9.6315, 10.1870, 11.1429, 11.2019,
11.4584.

The data set is available at https://covid19.who.int/.
The TTT plot for this data set is presented in Figure[sl This plot indicates

that the hazard rate function is decreasing.

For all competing models, Table [5] shows summary fit for data set 2. Ac-
cording to the selection criterion above, it is clear that GLP model is the most
suitable for second data set. This conclusion is also supported by the graphical
displays in Figure [6]

6. Conclusion and comments

In this paper, we have considered a generalized Lindley-Poisson distribu-
tion to analyze reliability /survival data where only the minimum of the sample
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Ficure 5. TTT plot for data set 2.

TABLE 5. Parameter estimates, log-likelihood wvalues and
goodness-of-fit measures for data set 2.

Model MLE log(L) CvM AD KS p-value

GLP | a=0.0006 -140.87 0.089 0.623 0.081 0.699
A\ = 0.2546
0 = 1.8842

LP | A=22730 -145.16 0.358 2.473 0.140 0.099
6 = 0.4530

Lindley | A = 0.6578 -150.94 0.938 5.847 0.201 0.004
Weibull | & =0.8464 -141.75 0.100 0.696 0.080 0.677
2

B =2.2196
Gamma | & = 0.8038 -142.41 0.160 0.974 0.096 0.455
B =3.0323

from generalized Lindley distribution is observed and the sample size is a ran-
dom variable having zero-truncated Poisson distribution. The resulting model
is very flexible with decreasing, increasing, bathtub and increasing-decreasing-
increasing shaped hazard rate function. The proposed model can be a viable
alternative to well known models available in the literature and can be useful
to analyze real data from wide range of applications.
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