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Abstract

We study a nonlinear Black–Scholes equation whose nonlinearity is due to
feedback effects. The market involved here is illiquid as a result of transaction
costs. An analytic solution to the equation via long and short gamma posi-
tions is currently unknown. After transforming the equation into a parabolic
nonlinear porous medium-type equation, we find that the assumption of a
traveling wave profile to the later equation reduces it to Ordinary Differential
Equations (ODEs). This together with the use of long and short gamma po-
sitions facilitate a twice continuously differentiable solution. The solution can
be used to price a call option. Both positive and negative gamma exposures
can lead to the value of a short call.
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1. Introduction

In formulating classical arbitrage pricing theory, two primary assumptions
used are that markets are frictionless and competitive. A frictionless market
has no transaction costs and restrictions on trade. A competitive market
allows a trader to buy or sell any quantity of a security without changing its
price. Relaxing the two assumptions leads to liquidity risk.

Although analytic solutions of the nonlinear Black–Scholes Partial Differ-
ential Equation have been obtained (see [3, 4, 5]), the solution via long and
short gamma positions is currently unknown. Long (short) call prices have
negative (positive) gamma. Positive and negative gamma exposure can lead
to the value of a short call.

The purpose of this paper is to obtain an analytic solution of the nonlin-
ear Black–Scholes equation arising from transaction costs via long and short
gamma positions. This is done by transforming the equation into a nonlinear
porous medium-type equation and then assuming a solitary wave solution.

This paper is outlined as follows. Section 2 describes the modified op-
tion pricing theory. The solution to the nonlinear Black–Scholes equation is
presented in Section 3. Section 4 concludes the paper.

2. Modified Option Valuation Model

Nonlinearities in diffusion models can arise from source terms, insect dis-
persal, heat conduction and illiquid market effects among others.

In this work, we will consider the continuous-time (quadratic) transaction-
cost model for modelling illiquid markets. Two assets are used in the model:
a bond (or a risk-free money market account with spot rate of interest r ≥ 0)
whose value at time t is Bt ≡ 1, and a stock (i.e. a risky and illiquid asset).
The bond’s market is assumed to be liquid (or perfectly elastic) [2].

Cetin et al. [2] has put forward the predominant model in the transaction-
cost model where a fundamental stock price process s0t follows the dynamics

ds0t = µs0tdt+ σs0tdWt, t ∈ [0, T ],

where µ is drift, σ is volatility, and Wt is the Wiener process. Use of a
Markovian trading strategy Φt = ϕ(t, s0t ) for a smooth function ϕ = us resulted
into the equation

ut +
1
2σ

2s2uss(1 + 2ρsuss) = 0, u(s0T , T ) = h(s0T ), (1)

where ρ > 0 is a measure of the liquidity of the market and h(s0T ) is a terminal
claim whose hedge cost u(s0t , t) is the solution to (1).
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3. Solution to a Nonlinear Black–Scholes Equation

To solve (1), differentiate it twice with respect to the spatial variable s.
Then, set uss = w to get

wt +
σ2s2

2 (1 + 4ρsw)wss + 2ρσ2s3w2
s + 2σ2s(1 + 6ρsw)ws

+ σ2(1 + 6ρsw)w = 0.

Apply the transformations w = υ
ρs and x = ln s to the reaction-advection-

diffusion-type equation above to get

υt +
σ2

2 (1 + 4υ)υxx + 2σ2υ2x +
σ2

2 (1 + 4υ)υx = 0. (2)

Letting υ = V−1
4 gives υt = Vt

4 , υx = Vx
4 , and υxx = Vxx

4 . Substitute these
expressions into (2) and simplify to get

Vt +
σ2

2 (V Vxx + V 2
x + V Vx) = 0 in R× (0,∞). (3)

We now look for a twice continuously differentiable solution of (3) on R.

Proposition 3.1. If ν(ξ) is a twice continuously differentiable function,
and x and t are the spatial and time variables, respectively, there exists a
traveling wave solution to (3) of the form

V (x, t) = ν(x− ct) = ν(ξ) where ξ = x− ct (4)

for all (x, t) ∈ R × (0,∞) such that V (x, t) is a traveling wave of permanent
form which translates to the right with constant speed c > 0.

P r o o f. Apply the chain rule to (4) to get

Vt = −cν ′(ξ), Vx = ν ′(ξ), and Vxx = ν ′′(ξ).

The prime denotes d
dξ . Substituting these expressions into (3) leads to the

conclusion that ν(ξ) must satisfy the nonlinear ODE

−cν ′ + σ2

2

(
νν ′′ + (ν ′)2 + νν ′

)
= 0. (5)

Hence V = V (x, t) solves (3).
We now assume that the traveling wave solution is localized. This means

that
lim

x→±∞
V (x, t) = lim

x→±∞
Vx(x, t) = lim

x→±∞
Vxx(x, t) = 0.

The function V together with the form (4) in this case is referred to as a
solitary wave (see [6]). We now impose the localizing boundary conditions

lim
ξ→±∞

ν(ξ) = lim
ξ→±∞

ν ′(ξ) = lim
ξ→±∞

ν ′′(ξ) = 0. (6)

To solve (5) in a closed-form, we first write it as

d
dξ (

σ2

2 νν ′ + σ2

4 ν2 − cν) = 0. (7)
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Integrate (7) and rearrange to get the standard form (see [6])

ν ′ = 2
σ2ν

(cν − σ2

4 ν2 + κ), (8)

where κ is a constant of integration. From (6), κ = 0. Simplifying (8) further
gives

−2dν
dξ = ν − 4c

σ2 .

Rearranging this equation and integrating gives

ν(ξ) = e
ξ0−ξ
2 + 4c

σ2 ,

where ξ0 is another constant of integration. Hence, the solution to (3) becomes

V (x, t) = e
x0−(x−ct)

2 + 4c
σ2 .

Substitute υ = V−1
4 . This gives the solution to (2) as

υ(x, t) = 1
4e

x0−(x−ct)
2 + c

σ2 − 1
4 . (9)

2

Theorem 3.1. If V (x, t) is any positive solution to the nonlinear advection-

diffusion-type equation Vt +
σ2

2

(
V Vxx + V 2

x + V Vx

)
= 0 in R× (0,∞), then

u(s, t) =


−1

ρ

(
√
se

s0+σ2t/4
2 + 1

4e
s0+σ2t/4

)
< 0 for uss > 0

1
ρ

(
√
se

s0+σ2t/4
2 − 1

4e
s0+σ2t/4

)
> 0 for uss < 0

(10)

solves the nonlinear Black–Scholes equation

ut +
1
2σ

2s2uss(1 + 2ρsuss) = 0

for each t, σ > 0, s > 1
16e

s0+σ2t/4, s0 ∈ R, and ρ > 0.

P r o o f. Substituting w = υ
ρs and x = ln s into (9) yields

uss =
1
ρ

(
1

4s3/2
e
s0+ct

2 + 1
s

(
c
σ2 − 1

4

))
. (11)

We can rewrite (11) as

ρsuss =
1

4
√
s
e
s0+ct

2 + c
σ2 − 1

4 . (12)

Apply localizing boundary conditions to (12) to get

0 = 0 +
(

c
σ2 − 1

4

)
.
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Hence c = σ2

4 . Plugging c = σ2

4 into (11) gives

uss =


1

4ρs3/2
e
s0+σ2t/4

2 > 0 for uss > 0

− 1
4ρs3/2

e
s0+σ2t/4

2 < 0 for uss < 0.

(13)

Integrating (13) twice with respect to s completes the prove. 2

Remark 3.1. (Gamma Positions) The value of a short call can be
obtained when we use

(1) a positive gamma exposure, uss > 0 (see (10)),

(2) a negative gamma exposure, uss < 0, particularly when s < 1
16e

s0+σ2t/4.

4. Conclusion

We have studied the hedging of derivatives in illiquid markets. A model
where the implementation of a hedging strategy affects the price process of
the underlying asset has been considered. Assuming the solution of a forward
wave, a classical solution was found for the nonlinear Black–Scholes equation
by use of long and short gamma positions. The solution obtained can be used
for pricing a European call option at time t > 0. Negative call option prices
serve to show that market frictions can have first-order effects on the prices
of securities [7]. Both positive and negative gamma exposures can lead to the
value of a short call.

In conclusion, future work will involve finding out how long (short) put
price behave in relation to positive (negative) gamma.
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