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Abstract

We study a nonlinear Black—Scholes equation whose nonlinearity is due to
feedback effects. The market involved here is illiquid as a result of transaction
costs. An analytic solution to the equation via long and short gamma posi-
tions is currently unknown. After transforming the equation into a parabolic
nonlinear porous medium-type equation, we find that the assumption of a
traveling wave profile to the later equation reduces it to Ordinary Differential
Equations (ODEs). This together with the use of long and short gamma po-
sitions facilitate a twice continuously differentiable solution. The solution can
be used to price a call option. Both positive and negative gamma exposures
can lead to the value of a short call.

Math. Subject Classification: 35C05, 35K55, 91G80

Key Words and Phrases: nonlinear Black—Scholes equation, illiquid
markets, transaction costs, gamma positions, analytic solution

Received: December 13, 2023 © 2024 Diogenes Co., Sofia



456 J.E. Esekon

1. Introduction

In formulating classical arbitrage pricing theory, two primary assumptions
used are that markets are frictionless and competitive. A frictionless market
has no transaction costs and restrictions on trade. A competitive market
allows a trader to buy or sell any quantity of a security without changing its
price. Relaxing the two assumptions leads to liquidity risk.

Although analytic solutions of the nonlinear Black—Scholes Partial Differ-
ential Equation have been obtained (see [3|, [4] [5]), the solution via long and
short gamma positions is currently unknown. Long (short) call prices have
negative (positive) gamma. Positive and negative gamma exposure can lead
to the value of a short call.

The purpose of this paper is to obtain an analytic solution of the nonlin-
ear Black—Scholes equation arising from transaction costs via long and short
gamma positions. This is done by transforming the equation into a nonlinear
porous medium-type equation and then assuming a solitary wave solution.

This paper is outlined as follows. Section 2 describes the modified op-
tion pricing theory. The solution to the nonlinear Black—Scholes equation is
presented in Section 3. Section 4 concludes the paper.

2. Modified Option Valuation Model

Nonlinearities in diffusion models can arise from source terms, insect dis-
persal, heat conduction and illiquid market effects among others.

In this work, we will consider the continuous-time (quadratic) transaction-
cost model for modelling illiquid markets. Two assets are used in the model:
a bond (or a risk-free money market account with spot rate of interest r > 0)
whose value at time ¢ is By = 1, and a stock (i.e. a risky and illiquid asset).
The bond’s market is assumed to be liquid (or perfectly elastic) [2].

Cetin et al. [2] has put forward the predominant model in the transaction-
cost model where a fundamental stock price process s9 follows the dynamics

ds) = psddt + os)dWy, t€[0,77,

where p is drift, o is volatility, and W, is the Wiener process. Use of a
Markovian trading strategy ®; = ¢(t, s9) for a smooth function ¢ = us resulted
into the equation

U + %Uzszuss(l + 2psugs) =0, u(s?p,T) = h(s%), (1)

where p > 0 is a measure of the liquidity of the market and h(s%) is a terminal
claim whose hedge cost u(sY,t) is the solution to (1))
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3. Solution to a Nonlinear Black—Scholes Equation

To solve , differentiate it twice with respect to the spatial variable s.
Then, set uss = w to get

wi+ T (14 dpsw)wes +2p05 w2 + 20%5(1 + 6psw)uw,
+ 02(1 + 6psw)w = 0.

Apply the transformations w = % and x = In s to the reaction-advection-
diffusion-type equation above to get

v + O'72(1 + 40) vz + 20%02 + %2(1 + 4v)v, = 0. (2)
Letting v = % gives vy = %, Uy = %, and vz, = %. Substitute these
expressions into and simplify to get

Vit C(VVie + V2+VV,) =0 in R x (0,00). (3)

We now look for a twice continuously differentiable solution of on R.

PRrOPOSITION 3.1. Ifwv(§) is a twice continuously differentiable function,
and x and t are the spatial and time variables, respectively, there exists a
traveling wave solution to @ of the form

V(z,t) =v(z —ct) =v(§) where {=x—ct (4)

for all (x,t) € R x (0,00) such that V(x,t) is a traveling wave of permanent
form which translates to the right with constant speed ¢ > 0.

P r oo f. Apply the chain rule to to get
Vi =—c/ (&), Ve=1(, and V. =1"(9).

The prime denotes d%. Substituting these expressions into leads to the
conclusion that v(£) must satisfy the nonlinear ODE

—cv + "72 (" + (V) + /) =0. (5)
Hence V = V/(z, 1) solves (3).
We now assume that the traveling wave solution is localized. This means
that

lim V(z,t) = lim Vy(z,t) = lim Vyu(z,t) =0.
r—=+00 z—+oo r—+00

The function V together with the form in this case is referred to as a
solitary wave (see [6]). We now impose the localizing boundary conditions

lim v(6) = lim v/(§) = lm v'(€) = 0. (6)

E—+oo

To solve in a closed-form, we first write it as

d%(%zm/ + %2u2 —cv)=0. (7)
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Integrate and rearrange to get the standard form (see [6])

V=2 (cv— %QVQ + k), (8)

ag°“r
where k is a constant of integration. From @, k = 0. Simplifying further
gives

dv _ ,, _ 4c
_2(17&_]/ o2

Rearranging this equation and integrating gives

&o—¢
v(€)=e 2 + 3,

where & is another constant of integration. Hence, the solution to becomes
xo—(x—ct)
Viz,t)=e 2 + %,

Substitute v = %. This gives the solution to 1) as

xo—(z—ct)
v(z,t)=te 2 +

(9)

d

QN‘Q
ca

THEOREM 3.1. IfV(x,t) is any positive solution to the nonlinear advection-
diffusion-type equation V; + %2 (VVm +V2+ VVz) =0in R x (0,00), then

so+a?t/4 5
_% Vse 2 4 lesoto t/4) <0 for wug>0
u(s,t) = sortot/4 . (10)
% <\/§e 2 — fesoto t/4> >0 for wugs <0
solves the nonlinear Black—Scholes equation
ug + %0252u85(1 + 2psuss) =0
for each t,o > 0, s > %es“"%/‘l, so € R, and p > 0.
P r o o f. Substituting w = % and x = In s into @ yields
so+ct
Uss = % <45%/2e 2+ % (0762 - 111)) : (11)
We can rewrite as
so+ct
PSUss = %\/56 2+ ?62 - i (12)

Apply localizing boundary conditions to to get
0=0+(5%-17).

o2
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Hence ¢ = %2. Plugging ¢ = %2 into gives

1 80+0'2t/4
— 2 >0 for wugs >0
15372 ¢ ss
Ugs = 0s v (13)
—We 2 <0 for Ugs < 0.
Integrating twice with respect to s completes the prove. O

REMARK 3.1. (Gamma Positions) The value of a short call can be
obtained when we use

(1) a positive gamma exposure, ugs > 0 (see ),
(2) anegative gamma exposure, uss < 0, particularly when s < %esﬁ"%/‘l.

4. Conclusion

We have studied the hedging of derivatives in illiquid markets. A model
where the implementation of a hedging strategy affects the price process of
the underlying asset has been considered. Assuming the solution of a forward
wave, a classical solution was found for the nonlinear Black—Scholes equation
by use of long and short gamma positions. The solution obtained can be used
for pricing a European call option at time ¢t > 0. Negative call option prices
serve to show that market frictions can have first-order effects on the prices
of securities [7]. Both positive and negative gamma exposures can lead to the
value of a short call.

In conclusion, future work will involve finding out how long (short) put
price behave in relation to positive (negative) gamma.

References

[1] F. Black, M. Scholes, The pricing of options and corporate liabilities, The
Journal of Political Economy, 81, No 3 (1973), 637-654.

[2] U. Cetin, R. Jarrow, P. Protter, Liquidity risk and arbitrage pricing theory,
Finance Stoch., 8 (2004), 311-341.

[3] J.E. Esekon, Analytic solution of a nonlinear Black—Scholes equation, In-
ternational Journal of Pure and Applied Mathematics, 82, No 4 (2013),
547-555.

[4] J.E. Esekon, A particular solution of a nonlinear Black—Scholes partial
differential equation, International Journal of Pure and Applied Mathe-
matics, 81, No 5 (2012), 715-721.

[5] J. Esekon, S. Onyango, N.O. Ongati, Analytic solution of a nonlinear
Black—Scholes partial differential equation, International Journal of Pure
and Applied Mathematics, 61, No 2 (2010), 219-230.



460 J.E. Esekon

[6] J.D. Logan, An Introduction to Nonlinear Partial Differential Equations,
Second Edition, John Wiley and Sons, Inc., Hoboken, New Jersey, USA
(2008).

[7] F.A. Longstaff, Are negative option prices possible? The callable U.S.
treasury-bond puzzle, Journal of Business, 65, No 4 (1992), 571-592.



	1. Introduction
	2. Modified Option Valuation Model
	3. Solution to a Nonlinear Black–Scholes Equation
	4. Conclusion
	References

