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Abstract

In this paper, using Laplace transform we prove the well-posedness of
the Cauchy problem for the strongly nonlinear modified Korteweg-de Vries
equation on semi-axis in both the focusing and the defocusing case. We applied
the outcoming results of this work to another familiar form of the Korteweg–de
Vries, that played a significant role in the development of the soliton theory.
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1. Introduction

Over the past several years, there has been a significant number of re-
searches on the topics of partial and ordinary differential equations due to
their effectiveness in a variety of pure and applied mathematics domains. Dif-
ferential equations have unlimited standards and can explain physical models
of many phenomena in a wide variety of areas. We are well recognized that
finding the exact solution to such an equation is quite difficult, and that the
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exact solution’s form is frequently too complicated to be effectively used to
numerical calculations. The exact solution of initial value issues for partial and
ordinary differential equations can be investigated using the Laplace transform
method, Fourier transform method, Green’s function approach, and other ap-
proximation methods which are all valuable and essential technique (see [1],
[2], [3], [4], [5], [6]).

The aim of this work is to develop Laplace transform solutions for the
modified Korteweg-de Vries equation on the half-line and applied the results
to another type of Korteweg-de Vries equation. This equation is used to
represent a wide variety of astrophysical and physical phenomena, including
solitary waves and solitons, which propagate with the same shape and constant
velocity and remain stable even after mutual collision. Other examples of these
phenomena include acoustic waves in enharmonic crystals, slightly interacting
waves in shallow water, long internal waves in the ocean, and ion-acoustic
waves in plasma.

The Korteweg-de Vries equation can be expressed in different types, for
example the following equation

vt + λ1vxx + 2uux = 0, (1)

introduced by Boussinesq (see [9]) for the first time in 1877, and then redis-
covered by Korteweg and de Vries (see [18]) in 1895.

In which the equation

vt + λ2vxxxxx + 2uux = 0, (2)

is now as the fifth-order KdV equation or Kawahara equation.
For the Korteweg-de Vries equation, Bubnov studied the initial-boundary

value problem in 1979 (see [10]). Several initial boundary value problems of
the Korteweg-de Vries equation have been the subject of in-depth research
since Bubnov’s work (see [7], [11], [13], [14], [19]).

Bona, Sun, Zhang (see [7]) and Colliander, Kenig (see [11]) respectively
provided two new, slightly similar approaches to analyse the solvability of the
non-homogeneous IBVP of the Korteweg-de Vries equation posed on half line.
Kenig, Ponce, Vegas, and Bourgain (see [8], [17]) investigated the existence
and uniqueness solution for Cauchy problem of the Korteweg-de Vries equation

vt + vvx + vxx = 0, u(x, 0) = φ(x), t, x ∈ R, (3)

on the whole line.
Further, Bona, Sun, Zhang and Homer studied the solvability of the Korte-

weg-de Vries equation (3) on a finite interval 0 < x < 1, t > 0. We are aware
that two distinct approaches to the analysis of IBVPs of dispersive equations
have been developed, one by Faminskii (see [13]) and the other by Fokas,
Himonas, and Mantzavinos (see [14]).
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The paper is organised as follows: in Sec. 2, we prove the well-posedness
of the strongly nonlinear modified third-order KdV equation using Laplace
transforms and hence using the Green’s function to obtain the particular solu-
tion. Then in Sec. 3, we provide an example of the most familiar model that
used to create an infinite number of Korteweg-de Vries equations. Finally, in
conclusion section we list out the obtained solutions as results of using Laplace
transform method.

Now, we would rather present the strongly nonlinear modified Korteweg-
de Vries equation by Laplace transform solutions as a new approach to prove
the well-posedness of Cauchy problem problem for the modified Korteweg-de
Vries equation.

2. Laplace transform solutions of the modified Korteweg-de Vries
(mKdV) equation

If there are real constants A,B such that the real valued function f :
(0,∞) → R, |f(t)| ≤ AeBt, ∀t > 0, then f(t) is said to be of exponential
order and it has its Laplace transform L(f) = F (s),

F (s) =

∫ ∞

0
f(t)e−stdt.

In which there exists a real number δ such that this integral converges if
R(s) > δ and diverges if R(s) < δ, where R(s) is the real part of s. Moreover,
|F (s)| → 0 as R(s) → ∞.

Let us investigate how the Laplace transform represents solutions to the
strongly nonlinear modified Korteweg-de Vries equation

vt(x, t) + aεv2(x, t)vx(x, t) + vxxx(x, t) = 0, ε = ±1 (4)

v(x, 0) = φ(x), t ∈ [0,∞), x ∈ R, (5)

where ε indicates whether the equation is focusing or defocusing, v(x, t) is the
real-valued function denotes the average velocity. In which waves steepen due
to the nonlinear term, while decay due to the third order term.

We provide the following theorem to prove the well-posedness of the Cauchy
problem for the strongly nonlinear modified Korteweg-de Vries equation.

Theorem 2.1. The solution v(x, t) of the Cauchy problem (4)-(5) is

V (x, s) = A(s)eλ1x +B(s)eλ2x + C(s)eλ3x + Vp(x), (6)

where Vp(x) denotes the particular solution of problem (4)-(5) and

Vp(x) =


∫∞
x (G(x, ξ)f(ξ)dξ, ξ < x∫ x
−∞(G(x, ξ)f(ξ)dξ, ξ > x,

(7)
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G(x, ξ) =
∆

∆1
, (8)

where

∆ = (λ1 − λ3)e
(λ1+λ3)ξ+λ2x + (λ2 − λ1)e

(λ1+λ2)ξ+λ3x

+ (λ3 − λ2)e
(λ3+λ2)ξ+λ1x,

∆1 = λ1(λ3 − λ2)e
(λ2+λ3)ξ+λ1x + λ2(λ1 − λ3)e

(λ1+λ3)ξ+λ2x

+ λ3(λ2 − λ1)e
(λ1+λ2)ξ+λ3x,

λ1, λ2 and λ3 denote the roots of the equation

λ3 + aεv2λ+ s = 0.

P r o o f. By Applying the Laplace transform to equation (4) with respect
to t, yields

sV (x, s)− v(x, 0) + aεv2(x, t)Vx(x, s) + Vxxx(x, s) = 0.

Reorganizing the equation, we get

Vxxx(x, s) + aεv2(x, t)Vx(x, s) + sV (x, s) = φ(x), (9)

where V (x, s) = L[v(x, t)].
From (9), the cubic auxiliary equation takes the form

λ3 + aεv2λ+ s = 0, (10)

with roots λ1, λ2 and λ3.
The general solution of equation (9) can be formulated in the following

form:

V (x, s) = A(s)eλ1x +B(s)eλ2x + C(s)eλ3x + Vp(x), (11)

because of equation (9) has only a first and third partial derivatives with
respect to x.

In which

Vp(x) =

∫ x

−∞
G(x, ξ)f(ξ)dξ +

∫ ∞

x
G(x, ξ)f(ξ)dξ,

is a particular solution of the problem (4)-(5) with the Green’s functionG(x, ξ) =
∆
∆1

, where

∆ =

∣∣∣∣∣∣
eλ1ξ eλ2ξ eλ3ξ

λ1e
λ1ξ λ2e

λ2ξ λ3e
λ3ξ

eλ1x eλ2x eλ3x

∣∣∣∣∣∣ , ∆1 =

∣∣∣∣∣∣
eλ1ξ eλ2ξ eλ3ξ

λ1e
λ1ξ λ2e

λ2ξ λ3e
λ3ξ

λ1e
λ1x λ2e

λ2x λ3e
λ3x

∣∣∣∣∣∣
and λ1, λ2 and λ3 are roots of the equation (10). The theorem is proved. 2
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3. Example

It has been considered that the KdV equation describes the a variety of
physical problems such as plasma waves, magnetohydrodynamic waves, and
waves with extended wave lengths.

In this example, we investigate the Cauchy problem for the important
strongly nonlinear third-order KdV equation:

vt + 6εv2vx + vxxxx = 0, ε = ±1, (12)

v(x, 0) = v0(x), t ∈ [0,∞), x ∈ R. (13)

Problem (12)-(13) provides the most familiar model that used to create an
infinite number of Korteweg-de Vries (KdV) equation conservation laws (see
[21]), leading to the identification of the KdV equation’s Lax pair and the
development of the Inverse Scattering Transform (IST) (see [16]). Another
notable feature of the modified Korteweg–de Vries equation (mKdV) equation
is its peculiar soliton behavior or breathers that played a significant role in
the development of the soliton theory.

Problem (12)-(13) has been investigated by some other methods via review
solutions to the mKdV equation in terms of Wronskians (see [22]), the method
of commuting flows (see [15]), separation of variables method (see [20]) and
the inverse scattering transform method (see [12]).

Now, we apply Laplace transform approach to solve the Cauchy problem
(12)-(13) as follows

Vxxx(x, s) + 6εv2(x, t)Vx(x, s) + sV (x, s) = φ(x). (14)

The cubic polynomial auxiliary equation of equation (14) takes the form

λ3 + 6εv2λ+ s = 0, (15)

with the roots λ1, λ2 and λ3 corresponding to its discriminant 32ε3v6 + s2.
If 32ε3v6+s2 > 0, then the unique real solution of equation (15) is obtained

from:

λ1 =
3

√
−s

2
+

√
s2

4
+ 8ε3v6 +

3

√
−s

2
−
√

s2

4
+ 8ε3v6.

If 32ε3v6 + s2 < 0, the three real solutions of (15) are given by:

λ1 = 2
√

−2εv2 cos

Arc cos
(

s
4εv2

√
− 1

2εv2

)
+ 2π

3

 ,

λ2 = 2
√
−2εv2 cos

Arc cos
(

s
4εv2

√
− 1

2εv2

)
+ 4π

3

 ,
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λ3 = 2
√

−2εv2 cos

Arc cos
(

s
4εv2

√
− 1

2εv2

)
3

 .

If 32ε3v6 + s2, the equation (15) has three real roots with two the same.
Hence

V (x, s) = A(s)eλ1x +B(s)eλ2x + C(s)eλ3x +

∫ +∞

−∞
G(x, ξ)f(ξ)dξ,

G(x, ξ) is calculated in Theorem 2.1.

4. Conclusion

The well-posedness of the Cauchy problem of the strongly nonlinear mKdV
equation proved using the Laplace transform method. It is possible to show
that the Laplace transform approach is an extremely efficient and successful
approach for obtaining the exact solutions for many problems of differential
equations. We provided an example to indicate how the Laplace transform
represents the solutions to well-known class of KdV equations.
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value problem for mixed-type operator-differential equations, IAENG In-
ternational Journal of Applied Mathematics, 51 (2021), 984-989.

[6] A.B.I. Ahmed, Approximate solutions and estimate of galerkin method for
variable third-order operator-differential equation, Advances in Systems
Science and Applications, 22 (2022), 92-102.



LAPLACE TRANSFORM SOLUTIONS OF CAUCHY . . . 453

[7] J.L. Bona, S.M. Sun, B.-Y. Zhang, A non-homogeneous bound-
ary value problem for the Korteweg–de Vries equation in a quar-
ter plane, Trans. Amer. Math. Soc., 354 (2001), 427–490; DOI:
10.1016/j.anihpc.2007.07.006.

[8] J. Bourgain, Fourier transform restriction phenomena for certain lat-
tice subsets and applications to non-linear evolution equations, Part
II: the KdV equation, Geom. Funct. Anal., 3 (1993), 209–262; DOI:
10.1007/BF01896020.

[9] J.V. Boussinesq, Essai sur la theorie des eaux courantes, Mem. Pres. Div.
Sav. Acad. Sci., 23 (1877).

[10] B.A. Bubnov, Generalized boundary value problems for the Korteweg–de
Vries equation in finite domain, Differ. Equ., 15 (1979), 17–21.

[11] J. Colliander, C. Kenig, The generalized Korteweg–de Vries equation on
the half line, Comm. Partial Differential Equations, 27 (2002), 2187–2266;
DOI: 10.1081/pde-120016157.

[12] F. Demontis, Exact solutions of the modified Korteweg-de Vries equation,
Theoretical and Mathematical Physics, 168, No 1 (2011), 886-897.

[13] A.V. Faminskii, A mixed problem in a semistrip for the Korteweg–de
Vries equation and its generalizations (in Russian), Dinamika Sploshn.
Sredy, 258 (1988), 54–94.

[14] A.S. Fokas, A. Himonas, D. Mantzavinos, The Korteweg–de Vries equa-
tion on the half-line, Nonlinearity, 29, No 2 (2016), 489–527; DOI:
10.1088/0951-7715/29/2/489.

[15] J. Forlano, A remark on the well-posedness of the modified KdV
equation in L2, arXiv Preprint arXiv:2205.13110 (2022); DOI:
10.48550/arXiv.2205.13110.

[16] C.S. Gardner, J.M. Green, M.D. Kruskal and R.M. Miura, Method for
solving the Korteweg–de Vries equation, Phys. Rev. Lett, 19 (1967),
1095–1097; DOI: 10.1103/PhysRevLett.19.1095.

[17] C.E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem
for the KdV equation, J. Amer. Math. Soc., 4 (1991), 323–347; DOI:
10.2307/2939277.

[18] D.J. Korteweg, G. de Vries, On the change of form of long waves advancing
in a rectangular canal, and on a new type of long stationary waves, Philos.
Mag., 39 (1895), 422–443; DOI: 10.1080/14786449508620739.

[19] T.R. Marchant, N.F. Smyth, Initial-boundary value problems for the Kor-
teweg–de Vries equation, IMA J. Appl. Math., 47 (1991), 247–264; DOI:
10.1093/imamat/47.3.247.

[20] I.P. Martynov, On the connection of the first Painleve equation with the
Korteweg–de Vries equation. Differ. Uravn., 23, No 5 (1987), 904–905.



454 A.B.I. Ahmed

[21] R.M. Miura, C.S. Gardner and M.D. Kruskal, KdV equation and gener-
alizations. II.Existence of conservation laws and constant of motion, J.
Math. Phys, 9, 1204–1209 (1968); DOI: 10.1063/1.1664701.

[22] D.J. Zhang, S.L. Zhao, Y. Y. Sun, J. Zhou, Solutions to the modified
Korteweg–de Vries equation. Reviews in Mathematical Physics, 26, No 7
(2014), 1430006; DOI: 10.1142/S0129055X14300064.


	1. Introduction
	2.  Laplace transform solutions of the modified Korteweg-de Vries (mKdV) equation 
	3. Example
	4. Conclusion
	References

