IJAM: Volume 37, No. 4 (2024)

DOI: 10.12732/ijam.v37i4.3

 

A GENERALIZED q-GRUSS INEQUALITY

INVOLVING THE GENERALIZED KOBER TYPE

FRACTIONAL q-INTEGRAL OPERATOR

 

Jaime Castillo 1,§ ,  Leda Galue 2

 

1 Researching Center, University of La Guajira

Faculty of Engineering, Block 6

Riohacha – 440002, COLOMBIA

2 CIMA, University of Zulia

Maracaibo – 4001, VENEZUELA

 

 

Abstract.  In this paper we consider the generalized fractional q-integral operator of Kober type, which contains the basic analogue of the Fox-Wright hypergeometric function to derive a new fractional q-integral inequality of Gruss type, for synchronous functions and absolutely continuous q-functions. The results obtained by Kalla and Rao, Secer et al., Zhu et al., Dahmani and Benzidane, Belarbi and Dahmani are particular cases of our results.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i4.3
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 4

References

[1] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer, New York (2012).

[2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, Int. Journal of Math. Analysis, 4, No 4 (2010), 185-191.

[3] J. Castillo, L. Galue, On a fractional q-integral operator involving the basic analogue of Fox-Wright function, International Journal of Applied Mathematics, 33, No 6 (2020), 969-994;
doi: 10.12732/ijam.v33i6.2.

[4] J. Choi, D. Ritelli, P. Agarwal, Some new inequalities involving generalized Erdelyi-Kober fractional q-integral operator, Appl. Math. Sci., 9, No 72 (2015), 3577-3591.

[5] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bulletin of Math. Anal. and Applic., 2, No 3 (2010), 93-99.

[6] Z. Dahmani, A. Benzidane, New weighted Gruss type inequalities via (\alpha, \beta) fractional q-integral inequalities, International Journal of Innovation and Applied Studies, 1, No 1 (2012), 76-83.

[7] S.S. Dragomir, A generalization of Gruss inequality in inner product spaces and applications, Journal of Math. Anal. and Applic., 237, No 1 (1999), 74-82.

[8] S.S. Dragomir, A Gruss type inequality for sequences of vectors in inner product spaces and applications, Journal of Inequalities in Pure and Applied Math., 1, No 2 (2000), 1-11.

[9] S.S. Dragomir, Some integral inequalities of Gr¨uss type, Indian Journal of Pure and Applied Mathematics, 31, No 4 (2000), 397-415.

[10] L. Galue, Generalized Erdelyi-Kober fractional q-integral operator, Kuwait J. Sci. Eng., 36, No 2A (2009), 21-34.

[11] L. Galue, On composition of fractional q-integral operators involving basic hypergeometric functions, Journal of Inequalities and Special Functions, 1, No 1 (2010), 39-52.

[12] L. Galu´e, Some results involving generalized Erdelyi-Kober fractional q integral operator, Rev. Tecnocient´.fica URU, 6 (2014), 77-89.

[13] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge (2004).

[14] H. Gauchman, integral inequalities in q-calculus, Computers and Mathematics with Applications, 47, No 2-3 (2004), 281-300.

[15] D. Gruss, Uber das maximum des absoluten Betrages von  …., Math. Z., 39  (1935), 215-226.

[16] V. Kac, P. Cheung, Quantum Calculus, Universitext Springer, New York (2002).

[17] S.L. Kalla, R.K. Yadav, S.D. Purohit, On the Riemann-Liouville fractional q-integral operator involving a basic analogue of Fox H-function, Fract. Calc. Appl. Anal., 8, No 3 (2005), 313-322.

[18] S.L. Kalla, A. Rao, On Gruss type inequality for a hypergeometric fractional integral, Le Matematiche, 66, No 1 (2011), 57-64.

[19] E. Koelink, Quantum groups and q-special functions, In: Report No 96-10, Universiteit Van Amsterdam (1996).

[20] H. Ogunmez, U.M. Ozkan, Fractional quantum integral inequalities, J. of Inequal. And Appl., Article ID 787939, 7 pp. (2011); doi: 10.1155/2011/787939.

[21] S.D. Purohit, E. Ucar, R.K. Yadav, On fractional integral inequalities and their q-analogues, Rev. Tecnocientifica URU, 6 (2014), 53-66.

[22] A. Secer, S.D. Purohit, K.A. Selvakumaran, M.A. Bayram, Generalized q-Gruss inequality involving the Riemann-Liouville fractional q-integrals, Journal of Applied Mathematics (Hindawi), Article ID 914320 (2014); doi: 10.1155/2014/914320.

[23] W.T. Sulaiman, On some new tractional q-integral inequalities, South Asian J. of Math., 2, No 5 (2012), 450-459.

[24] C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Gruss-type inequalities and other inequalities, J. of Inequal. and Appl., Article 299 (2012), doi: 10.1186/1029-242X-2012-299

[1] Braaksma, B.L.J. Asymptotic expansions and analytic continuation for a class of Barnes integrals. Compositio Math., 15, 239–341 (1962–1964).

[2] Buschman, R.G.; Srivastava, H.M. The H functions associated with  a certain class of Feynman integrals. J. Phys. A: Math. Gen., 23, 4707–4710 (1990).

[3] Erdelyi, A. On some functional transformations. Univ. Politec. Torino Rend. Semin. Math., 10, 217–234 (1950–1951).

[4] Erdelyi, A. (Ed.), Higher Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London (1953–1955).

[5] Fox, Ch. The G and H-functions as symmetric Fourier kernels. Trans. Amer. Math. Soc., 98, 395–429 (1961).

[6] Gelfond, A.O.; Leontiev, A.F. On a generalization of the Fourier series (In Russian). Mat. Sbornik, 29 (71), 477–500 (1951).

[7] Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128 (1987).

[8] Kalla, S.L. Operators of fractional integration. In: Lecture Notes in Math., 798, 258–280 (1980).

[9] Karp, D. A note on Fox’s H-function in the light of Braaksma’s results, Ch.12 in: Special Functions and Analysis of Differential Equations (Eds. P. Agarwal, R.P. Agarwal, M. Ruzhansky). Chapman and Hall/ CRC, N. York (2020), 12 pp.; http://arxiv.org/abs/1904.10651v1.

[10] Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications. Ser. on Analytic Methods and Special Functions, 9, CRC Press, Boca Raton (2004).

[11] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier, Amsterdam etc. (2006).

[12] Kiryakova, V. Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York, 1994

[13] Kiryakova, V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions. AIP Conference Proc., 2048, # 050016, 10 pp. (2018); doi:10.1063/1.5082115.

[14] Kiryakova, V. Generalized fractional calculus operators with special functions. In: Handbook of Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110. De Gruyter (2019); doi:10.1515/9783110571622-004.

[15] Kiryakova, V. Unified approach to fractional calculus images of special functions – A survey. Mathematics, 8, Art. 2260; 35 pp. (2020), doi:10.3390/math8122260.

[16] Kiryakova, V. A guide to special functions in fractional calculus. Mathematics, 9, No 1, Art. 106, 40 pp. (2021); doi:10.3390/math9010106.

[17] Kiryakova, V.; Luchko, Yu. Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators. Central Eur. J. Physics, 11, 1314–1336 (2013); doi:10.2478/s11534-013-0217-1.

[18] Kiryakova, V.; Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdelyi-Kober fractional integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math., 36, No 5, 605–623 (2023); doi:10.12732/ijam.v36i5.2.

[19] Kiryakova, V.; Paneva-Konovska, J. Going next after “A Guide to Special Functions in Fractional Calculus”: A discussion survey. Mathematics, 12, Art. 319, 39 pp. (2024); https://doi.org/10.3390/math12020319.

[20] Kober, H. On fractional integrals and derivatives. Quart. J. Math. Oxford, ll,193–211 (1940).

[21] Le Roy, E. Valeurs asymptotiques de certaines series procedant suivant les puissances ent`eres et positives d’une variable reelle (In French). Darboux Bull. (2) 24, 245–268 (1900).

[22] Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables. Ellis Horwood, Chichester (1983); Transl. from Russian Ed., Method of Evaluation of Integrals of Special Functions (In Russian). Nauka i Teknika, Minsk (1978).

[23] Meijer, C.S. On the G-function. Indagationes Math., 8, 124–134; 213–225; 312–324; 391–400; 468–475; 595–602; 661–670; 713–723 (1946).

[24] Mittag-Leffler, M. G.: Sur la nouvelle function E_{\alpha} (x). Comp. Rend. Acad. Sci. Paris (Ser.5), 137, 554–558 (1903).

[25] Paneva-Konovska, J. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in Them and Convergence. World Scientific Publ., London (2016); doi:10.1142/q0026.

[26] Paneva-Konovska, J. Prabhakar function of Le Roy type: A set of results in the complex plane. Fract. Calc. Appl. Anal., 26, No 1, 32–53 (2023); doi:10.1007/s13540-022-00116-1.

[27] Paneva-Konovska, J., Kiryakova, V. The generalized Fox-Wright Function: Laplace transform, Erdelyi-Kober fractional Integral, role in fractional calculus. Mathematics, 12,

Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.

[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36, No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.

[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci. Publ., N. York-London-Paris-Tokyo, etc. (1992).

[30] Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche LII, No II, 297–310 (1997).

[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.

[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Switzerland etc. (1993).

[33] Slater, L.J. Generalized Hypergeometric Functions. Cambridge Univ. Press, London-N. York (1966).

[34] Sneddon, I.N. The use in mathematical analysis of Erdelyi-Kober operators and of some of their applications. In: Fractional Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457), Springer-Verlag, New York, 37–79 (1975).

[35] Vellaisamy, P.; Kataria, K.K. The I-function distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.

[36] Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer (1994).

 

·                IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/