DOI: 10.12732/ijam.v37i4.3
A GENERALIZED q-GRUSS INEQUALITY
INVOLVING THE GENERALIZED KOBER TYPE
FRACTIONAL q-INTEGRAL OPERATOR
Jaime Castillo 1,§ , Leda Galue 2
1 Researching Center, University of La Guajira
Faculty of Engineering, Block 6
Riohacha – 440002, COLOMBIA
2 CIMA, University of Zulia
Maracaibo – 4001, VENEZUELA
Abstract. In this paper we consider the generalized fractional q-integral operator of Kober type, which contains the basic analogue of the Fox-Wright hypergeometric function to derive a new fractional q-integral inequality of Gruss type, for synchronous functions and absolutely continuous q-functions. The results obtained by Kalla and Rao, Secer et al., Zhu et al., Dahmani and Benzidane, Belarbi and Dahmani are particular cases of our results.
How
to cite this paper?
DOI: 10.12732/ijam.v37i4.3
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 4
References
[1] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer, New York (2012).
[2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, Int. Journal of Math. Analysis, 4, No 4 (2010), 185-191.
[3] J. Castillo, L. Galue, On a fractional q-integral
operator involving the basic analogue of Fox-Wright function, International
Journal of Applied Mathematics, 33, No 6 (2020), 969-994;
doi: 10.12732/ijam.v33i6.2.
[4] J. Choi, D. Ritelli, P. Agarwal, Some new inequalities involving generalized Erdelyi-Kober fractional q-integral operator, Appl. Math. Sci., 9, No 72 (2015), 3577-3591.
[5] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bulletin of Math. Anal. and Applic., 2, No 3 (2010), 93-99.
[6] Z. Dahmani, A. Benzidane, New weighted Gruss type inequalities via (\alpha, \beta) fractional q-integral inequalities, International Journal of Innovation and Applied Studies, 1, No 1 (2012), 76-83.
[7] S.S. Dragomir, A generalization of Gruss inequality in inner product spaces and applications, Journal of Math. Anal. and Applic., 237, No 1 (1999), 74-82.
[8] S.S. Dragomir, A Gruss type inequality for sequences of vectors in inner product spaces and applications, Journal of Inequalities in Pure and Applied Math., 1, No 2 (2000), 1-11.
[9] S.S. Dragomir, Some integral inequalities of Gr¨uss type, Indian Journal of Pure and Applied Mathematics, 31, No 4 (2000), 397-415.
[10] L. Galue, Generalized Erdelyi-Kober fractional q-integral operator, Kuwait J. Sci. Eng., 36, No 2A (2009), 21-34.
[11] L. Galue, On composition of fractional q-integral operators involving basic hypergeometric functions, Journal of Inequalities and Special Functions, 1, No 1 (2010), 39-52.
[12] L. Galu´e, Some results involving generalized Erdelyi-Kober fractional q integral operator, Rev. Tecnocient´.fica URU, 6 (2014), 77-89.
[13] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge (2004).
[14] H. Gauchman, integral inequalities in q-calculus, Computers and Mathematics with Applications, 47, No 2-3 (2004), 281-300.
[15] D. Gruss, Uber das maximum des absoluten Betrages von …., Math. Z., 39 (1935), 215-226.
[16] V. Kac, P. Cheung, Quantum Calculus, Universitext Springer, New York (2002).
[17] S.L. Kalla, R.K. Yadav, S.D. Purohit, On the Riemann-Liouville fractional q-integral operator involving a basic analogue of Fox H-function, Fract. Calc. Appl. Anal., 8, No 3 (2005), 313-322.
[18] S.L. Kalla, A. Rao, On Gruss type inequality for a hypergeometric fractional integral, Le Matematiche, 66, No 1 (2011), 57-64.
[19] E. Koelink, Quantum groups and q-special functions, In: Report No 96-10, Universiteit Van Amsterdam (1996).
[20] H. Ogunmez, U.M. Ozkan, Fractional quantum integral inequalities, J. of Inequal. And Appl., Article ID 787939, 7 pp. (2011); doi: 10.1155/2011/787939.
[21] S.D. Purohit, E. Ucar, R.K. Yadav, On fractional integral inequalities and their q-analogues, Rev. Tecnocientifica URU, 6 (2014), 53-66.
[22] A. Secer, S.D. Purohit, K.A. Selvakumaran, M.A. Bayram, Generalized q-Gruss inequality involving the Riemann-Liouville fractional q-integrals, Journal of Applied Mathematics (Hindawi), Article ID 914320 (2014); doi: 10.1155/2014/914320.
[23] W.T. Sulaiman, On some new tractional q-integral inequalities, South Asian J. of Math., 2, No 5 (2012), 450-459.
[24] C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Gruss-type inequalities and other inequalities, J. of Inequal. and Appl., Article 299 (2012), doi: 10.1186/1029-242X-2012-299
Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.
[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36, No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.
[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci. Publ., N. York-London-Paris-Tokyo, etc. (1992).
[30] Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche LII, No II, 297–310 (1997).
[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.
[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Switzerland etc. (1993).
[33] Slater, L.J. Generalized Hypergeometric Functions. Cambridge Univ. Press, London-N. York (1966).
[34] Sneddon, I.N. The use in mathematical analysis of Erdelyi-Kober operators and of some of their applications. In: Fractional Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457), Springer-Verlag, New York, 37–79 (1975).
[35] Vellaisamy, P.; Kataria, K.K. The I-function distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.
[36] Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer (1994).
o Home
o Contents
(c) 2024, Diogenes Co, Ltd.; https://www.diogenes.bg/ijam/