IJAM: Volume 37, No. 4 (2024)
DOI: 10.12732/ijam.v37i4.2
EXACT SOLUTIONS FOR
NONLINEAR PDES
VIA HERMITE POLYNOMIALS
C. Cesarano 1, R. Garra 2,§, F. Maltese 3
1 Section of Mathematics
International Telematic University
Uninettuno
Corso Vittorio Emanuele II, 39, 00186
Roma, ITALY
2 Section of Mathematics
International Telematic University
Uninettuno
Corso Vittorio Emanuele II, 39, 00186
Roma, ITALY
3 I.I.S. Donato Bramante, Rome, ITALY
Abstract.
In this
note we construct exact solutions for nonlinear partial differential equations
by means of Hermite polynomials. In particular, we consider generalized Burgers
equations, that can be linearized by means of a Cole-Hopf-type transform. We
show that it is possible to construct an interesting particular solution by
using Hermite polynomials. We also consider a class of non-linear equations
admitting isochronous solutions. The main aim is to show that Hermite
polynomials can be used to construct exact solutions for a wide class of
nonlinear integro-differential equations including nonlinear fractional
equations.
Download paper from here
How
to cite this paper?
DOI: 10.12732/ijam.v37i4.2
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 4
References
[1] D. Assante, C. Cesarano, C. Fornaro, L. Vazquez,
Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev., 8,
No 5 (2015), 202-204.
[2] G. Bretti, C. Cesarano, P.E. Ricci, Laguerre-type
exponentials and generalized Appell polynomials, Computers & Mathematics
with Applications, 48, No 5-6 (2004), 833-839.
[3] G. Dattoli, D. Levi, Heat Polynomials, Umbral
Correspondence and Burgers Equations. arXiv Preprint nlin/0610076 (2006).
[4] G. Dattoli, R. Garra, S. Licciardi, Hermite,
Higher order Hermite, Laguerre type polynomials and Burgers like equations,
Journal of Computational and Applied Mathematics, 445 (2024), 115821.
[5] R. Droghei, R. Garra, Isochronous fractional PDEs.
Lecture Notes of TICMI, 21 (2020), 43-51.
[6] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo,
Theory and Applications of Fractional Differential Equations. Elsevier (2006).
[7] A.D. Polyanin, A.I. Zhurov, Separation of
Variables and Exact Solutions to Nonlinear PDEs. CRC Press (2021).
[8] P.L. Sachdev, Self-similarity and Beyond: Exact
Solutions of Nonlinear Problems. Chapman and Hall/CRC (2019).
[9] M. Wang, J. Zhang, E. Li, X. Xin, The generalized
Cole–Hopf transformation to a general variable coefficient Burgers equation
with linear damping term, Applied Mathematics Letters, 105 (2020), 106299.
[1] Braaksma, B.L.J.
Asymptotic expansions and analytic continuation for a class of Barnes
integrals. Compositio Math., 15, 239–341 (1962–1964).
[2] Buschman, R.G.;
Srivastava, H.M. The H functions associated with a certain class of Feynman
integrals. J. Phys. A: Math. Gen., 23, 4707–4710 (1990).
[3] Erdelyi, A. On some
functional transformations. Univ. Politec. Torino Rend. Semin. Math., 10,
217–234 (1950–1951).
[4] Erdelyi, A. (Ed.), Higher
Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London
(1953–1955).
[5] Fox, Ch. The G and
H-functions as symmetric Fourier kernels. Trans. Amer. Math. Soc., 98, 395–429
(1961).
[6] Gelfond, A.O.; Leontiev,
A.F. On a generalization of the Fourier series (In Russian). Mat. Sbornik, 29
(71), 477–500 (1951).
[7] Inayat-Hussain, A.A. New
properties of hypergeometric series derivable from Feynman integrals: II. A
generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128 (1987).
[8] Kalla, S.L. Operators of fractional
integration. In: Lecture Notes in Math., 798, 258–280 (1980).
[9] Karp, D. A note on Fox’s
H-function in the light of Braaksma’s results, Ch.12 in: Special Functions and
Analysis of Differential Equations (Eds. P. Agarwal, R.P. Agarwal, M.
Ruzhansky). Chapman and Hall/ CRC, N. York (2020), 12 pp.;
http://arxiv.org/abs/1904.10651v1.
[10] Kilbas, A.A.; Saigo, M.
H-Transforms: Theory and Applications. Ser. on Analytic Methods and Special
Functions, 9, CRC Press, Boca Raton (2004).
[11] Kilbas, A.A.; Srivastava,
H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential
Equations; Elsevier, Amsterdam etc. (2006).
[12] Kiryakova, V. Generalized
Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York,
1994
[13] Kiryakova, V.
Gel’fond-Leont’ev integration operators of fractional (multi-)order generated
by some special functions. AIP Conference Proc., 2048, # 050016, 10 pp. (2018);
doi:10.1063/1.5082115.
[14] Kiryakova, V. Generalized
fractional calculus operators with special functions. In: Handbook of
Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110. De Gruyter
(2019); doi:10.1515/9783110571622-004.
[15] Kiryakova, V. Unified
approach to fractional calculus images of special functions – A survey.
Mathematics, 8, Art. 2260; 35 pp. (2020), doi:10.3390/math8122260.
[16] Kiryakova, V. A guide to
special functions in fractional calculus. Mathematics, 9, No 1, Art. 106, 40
pp. (2021); doi:10.3390/math9010106.
[17] Kiryakova, V.; Luchko,
Yu. Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators. Central
Eur. J. Physics, 11, 1314–1336 (2013); doi:10.2478/s11534-013-0217-1.
[18] Kiryakova, V.;
Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdelyi-Kober fractional
integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le
Roy type. Intern. J. Appl. Math., 36, No 5, 605–623 (2023);
doi:10.12732/ijam.v36i5.2.
[19] Kiryakova, V.;
Paneva-Konovska, J. Going next after “A Guide to Special Functions in
Fractional Calculus”: A discussion survey. Mathematics, 12, Art. 319, 39 pp.
(2024); https://doi.org/10.3390/math12020319.
[20] Kober, H. On fractional
integrals and derivatives. Quart. J. Math. Oxford, ll,193–211 (1940).
[21] Le Roy, E. Valeurs
asymptotiques de certaines series procedant suivant les puissances ent`eres et
positives d’une variable reelle (In French). Darboux Bull. (2) 24, 245–268
(1900).
[22] Marichev, O.I. Handbook
of Integral Transforms of Higher Transcendental Functions, Theory and
Algorithmic Tables. Ellis Horwood, Chichester (1983); Transl. from Russian Ed.,
Method of Evaluation of Integrals of Special Functions (In Russian). Nauka i
Teknika, Minsk (1978).
[23] Meijer, C.S. On the
G-function. Indagationes Math., 8, 124–134; 213–225; 312–324; 391–400; 468–475;
595–602; 661–670; 713–723 (1946).
[24] Mittag-Leffler, M. G.:
Sur la nouvelle function E_{\alpha} (x). Comp. Rend. Acad. Sci. Paris (Ser.5),
137, 554–558 (1903).
[25] Paneva-Konovska, J. From
Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in
Them and Convergence. World Scientific Publ., London (2016); doi:10.1142/q0026.
[26] Paneva-Konovska, J.
Prabhakar function of Le Roy type: A set of results in the complex plane.
Fract. Calc. Appl. Anal., 26, No 1, 32–53 (2023); doi:10.1007/s13540-022-00116-1.
[27] Paneva-Konovska, J., Kiryakova,
V. The generalized Fox-Wright Function: Laplace transform, Erdelyi-Kober
fractional Integral, role in fractional calculus. Mathematics,
12,
Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.
[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.;
Dubatovskaya, M. Laplace transform (Part 1) of the multi-index
Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36,
No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.
[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I.
Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci.
Publ., N. York-London-Paris-Tokyo, etc. (1992).
[30] Rathie, A. A new generalization of the
generalized hypergeometric functions. Le Matematiche LII, No II, 297–310
(1997).
[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le
Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.
[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.
Fractional Integrals and Derivatives: Theory and Applications. Gordon and
Breach, Switzerland etc. (1993).
[33] Slater, L.J. Generalized Hypergeometric
Functions. Cambridge Univ. Press, London-N. York (1966).
[34] Sneddon, I.N. The use in mathematical analysis of
Erdelyi-Kober operators and of some of their applications. In: Fractional
Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457),
Springer-Verlag, New York, 37–79 (1975).
[35] Vellaisamy, P.; Kataria, K.K. The I-function
distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian
Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.
[36] Yakubovich, S.; Luchko, Y. The Hypergeometric
Approach to Integral Transforms and Convolutions. Kluwer (1994).
·
IJAM
o
Home
o
Contents
o
Editorial Board
(c) 2024, Diogenes
Co, Ltd.; https://www.diogenes.bg/ijam/