IJAM: Volume 37, No. 4 (2024)

DOI: 10.12732/ijam.v37i4.2

 

EXACT SOLUTIONS FOR NONLINEAR PDES

VIA HERMITE POLYNOMIALS

 

C. Cesarano 1, R. Garra 2,§,  F. Maltese 3

 

1 Section of Mathematics

International Telematic University Uninettuno

Corso Vittorio Emanuele II, 39, 00186 Roma, ITALY

2 Section of Mathematics

International Telematic University Uninettuno

Corso Vittorio Emanuele II, 39, 00186 Roma, ITALY

3 I.I.S. Donato Bramante, Rome, ITALY

 

Abstract.  In this note we construct exact solutions for nonlinear partial differential equations by means of Hermite polynomials. In particular, we consider generalized Burgers equations, that can be linearized by means of a Cole-Hopf-type transform. We show that it is possible to construct an interesting particular solution by using Hermite polynomials. We also consider a class of non-linear equations admitting isochronous solutions. The main aim is to show that Hermite polynomials can be used to construct exact solutions for a wide class of nonlinear integro-differential equations including nonlinear fractional equations.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i4.2
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 4

References

[1] D. Assante, C. Cesarano, C. Fornaro, L. Vazquez, Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev., 8, No 5 (2015), 202-204.

[2] G. Bretti, C. Cesarano, P.E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Computers & Mathematics with Applications, 48, No 5-6 (2004), 833-839.

[3] G. Dattoli, D. Levi, Heat Polynomials, Umbral Correspondence and Burgers Equations. arXiv Preprint nlin/0610076 (2006).

[4] G. Dattoli, R. Garra, S. Licciardi, Hermite, Higher order Hermite, Laguerre type polynomials and Burgers like equations, Journal of Computational and Applied Mathematics, 445 (2024), 115821.

[5] R. Droghei, R. Garra, Isochronous fractional PDEs. Lecture Notes of TICMI, 21 (2020), 43-51.

[6] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier (2006).

[7] A.D. Polyanin, A.I. Zhurov, Separation of Variables and Exact Solutions to Nonlinear PDEs. CRC Press (2021).

[8] P.L. Sachdev, Self-similarity and Beyond: Exact Solutions of Nonlinear Problems. Chapman and Hall/CRC (2019).

[9] M. Wang, J. Zhang, E. Li, X. Xin, The generalized Cole–Hopf transformation to a general variable coefficient Burgers equation with linear damping term, Applied Mathematics Letters, 105 (2020), 106299.

[1] Braaksma, B.L.J. Asymptotic expansions and analytic continuation for a class of Barnes integrals. Compositio Math., 15, 239–341 (1962–1964).

[2] Buschman, R.G.; Srivastava, H.M. The H functions associated with  a certain class of Feynman integrals. J. Phys. A: Math. Gen., 23, 4707–4710 (1990).

[3] Erdelyi, A. On some functional transformations. Univ. Politec. Torino Rend. Semin. Math., 10, 217–234 (1950–1951).

[4] Erdelyi, A. (Ed.), Higher Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London (1953–1955).

[5] Fox, Ch. The G and H-functions as symmetric Fourier kernels. Trans. Amer. Math. Soc., 98, 395–429 (1961).

[6] Gelfond, A.O.; Leontiev, A.F. On a generalization of the Fourier series (In Russian). Mat. Sbornik, 29 (71), 477–500 (1951).

[7] Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128 (1987).

[8] Kalla, S.L. Operators of fractional integration. In: Lecture Notes in Math., 798, 258–280 (1980).

[9] Karp, D. A note on Fox’s H-function in the light of Braaksma’s results, Ch.12 in: Special Functions and Analysis of Differential Equations (Eds. P. Agarwal, R.P. Agarwal, M. Ruzhansky). Chapman and Hall/ CRC, N. York (2020), 12 pp.; http://arxiv.org/abs/1904.10651v1.

[10] Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications. Ser. on Analytic Methods and Special Functions, 9, CRC Press, Boca Raton (2004).

[11] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier, Amsterdam etc. (2006).

[12] Kiryakova, V. Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York, 1994

[13] Kiryakova, V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions. AIP Conference Proc., 2048, # 050016, 10 pp. (2018); doi:10.1063/1.5082115.

[14] Kiryakova, V. Generalized fractional calculus operators with special functions. In: Handbook of Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110. De Gruyter (2019); doi:10.1515/9783110571622-004.

[15] Kiryakova, V. Unified approach to fractional calculus images of special functions – A survey. Mathematics, 8, Art. 2260; 35 pp. (2020), doi:10.3390/math8122260.

[16] Kiryakova, V. A guide to special functions in fractional calculus. Mathematics, 9, No 1, Art. 106, 40 pp. (2021); doi:10.3390/math9010106.

[17] Kiryakova, V.; Luchko, Yu. Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators. Central Eur. J. Physics, 11, 1314–1336 (2013); doi:10.2478/s11534-013-0217-1.

[18] Kiryakova, V.; Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdelyi-Kober fractional integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math., 36, No 5, 605–623 (2023); doi:10.12732/ijam.v36i5.2.

[19] Kiryakova, V.; Paneva-Konovska, J. Going next after “A Guide to Special Functions in Fractional Calculus”: A discussion survey. Mathematics, 12, Art. 319, 39 pp. (2024); https://doi.org/10.3390/math12020319.

[20] Kober, H. On fractional integrals and derivatives. Quart. J. Math. Oxford, ll,193–211 (1940).

[21] Le Roy, E. Valeurs asymptotiques de certaines series procedant suivant les puissances ent`eres et positives d’une variable reelle (In French). Darboux Bull. (2) 24, 245–268 (1900).

[22] Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables. Ellis Horwood, Chichester (1983); Transl. from Russian Ed., Method of Evaluation of Integrals of Special Functions (In Russian). Nauka i Teknika, Minsk (1978).

[23] Meijer, C.S. On the G-function. Indagationes Math., 8, 124–134; 213–225; 312–324; 391–400; 468–475; 595–602; 661–670; 713–723 (1946).

[24] Mittag-Leffler, M. G.: Sur la nouvelle function E_{\alpha} (x). Comp. Rend. Acad. Sci. Paris (Ser.5), 137, 554–558 (1903).

[25] Paneva-Konovska, J. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in Them and Convergence. World Scientific Publ., London (2016); doi:10.1142/q0026.

[26] Paneva-Konovska, J. Prabhakar function of Le Roy type: A set of results in the complex plane. Fract. Calc. Appl. Anal., 26, No 1, 32–53 (2023); doi:10.1007/s13540-022-00116-1.

[27] Paneva-Konovska, J., Kiryakova, V. The generalized Fox-Wright Function: Laplace transform, Erdelyi-Kober fractional Integral, role in fractional calculus. Mathematics, 12,

Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.

[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36, No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.

[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci. Publ., N. York-London-Paris-Tokyo, etc. (1992).

[30] Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche LII, No II, 297–310 (1997).

[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.

[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Switzerland etc. (1993).

[33] Slater, L.J. Generalized Hypergeometric Functions. Cambridge Univ. Press, London-N. York (1966).

[34] Sneddon, I.N. The use in mathematical analysis of Erdelyi-Kober operators and of some of their applications. In: Fractional Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457), Springer-Verlag, New York, 37–79 (1975).

[35] Vellaisamy, P.; Kataria, K.K. The I-function distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.

[36] Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer (1994).

 

·                IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/