IJAM: Volume 37, No. 4 (2024)
DOI: 10.12732/ijam.v37i4.1
GENERALIZED ERDELYI-KOBER
FRACTIONAL INTEGRALS
WITH I-FUNCTION AS KERNEL
V. Kiryakova 1, J. Paneva-Konovska 2,§
1,2 Institute of Mathematics and
Informatics
Bulgarian Academy of Sciences
’Acad. G. Bontchev’ Str., Block 8
Sofia – 1113, BULGARIA
Abstract.
The
Erdelyi-Kober fractional integrals and derivatives are variants of the Riemann-Liuoville
with very wide applications due to the freedom to chose their three arbitrary parameters.
In this paper we introduce and study a generalization of the Erdelyi-Kober
operators of fractional integration where the elementary kernel-function is
replaced by a suitably chosen
I^{1,0}_{1,1}-function.
The I-functions are generalized hypergeometric functions, introduced by Rathie
in 1997 as extensions of the Fox H-functions and Meijer G-functions, but have been
not popular because of their rather complicated structure and multivalued behaviour.
However, it happens that they are useful not only in statistical physics, but
include also important special functions in mathematics. In our previous works
we related the I-functions to some specific special functions of fractional
calculus, among which analogues of the Mittag-Leffler and
Le Roy
type functions. Here, we propose a theory of an I-function generalization of
the Erdelyi-Kober fractional integrals, that will serve further as a base for
further extension of the generalized fractional calculus with operators of fractional
multi-order.
Download paper from here
How
to cite this paper?
DOI: 10.12732/ijam.v37i4.1
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 4
References
[1] Braaksma, B.L.J.
Asymptotic expansions and analytic continuation for a class of Barnes
integrals. Compositio Math., 15, 239–341 (1962–1964).
[2] Buschman, R.G.;
Srivastava, H.M. The H functions associated with a certain class of Feynman
integrals. J. Phys. A: Math. Gen., 23, 4707–4710 (1990).
[3] Erdelyi, A. On some
functional transformations. Univ. Politec. Torino Rend. Semin. Math., 10,
217–234 (1950–1951).
[4] Erdelyi, A. (Ed.), Higher
Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London
(1953–1955).
[5] Fox, Ch. The G and
H-functions as symmetric Fourier kernels. Trans. Amer. Math. Soc., 98, 395–429
(1961).
[6] Gelfond, A.O.; Leontiev,
A.F. On a generalization of the Fourier series (In Russian). Mat. Sbornik, 29
(71), 477–500 (1951).
[7] Inayat-Hussain, A.A. New
properties of hypergeometric series derivable from Feynman integrals: II. A
generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128 (1987).
[8] Kalla, S.L. Operators of
fractional integration. In: Lecture Notes in Math., 798, 258–280 (1980).
[9] Karp, D. A note on Fox’s
H-function in the light of Braaksma’s results, Ch.12 in: Special Functions and
Analysis of Differential Equations (Eds. P. Agarwal, R.P. Agarwal, M.
Ruzhansky). Chapman and Hall/ CRC, N. York (2020), 12 pp.;
http://arxiv.org/abs/1904.10651v1.
[10] Kilbas, A.A.; Saigo, M.
H-Transforms: Theory and Applications. Ser. on Analytic Methods and Special
Functions, 9, CRC Press, Boca Raton (2004).
[11] Kilbas, A.A.; Srivastava,
H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential
Equations; Elsevier, Amsterdam etc. (2006).
[12] Kiryakova, V. Generalized
Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York,
1994
[13] Kiryakova, V.
Gel’fond-Leont’ev integration operators of fractional (multi-)order generated
by some special functions. AIP Conference Proc., 2048, # 050016, 10 pp. (2018);
doi:10.1063/1.5082115.
[14] Kiryakova, V. Generalized
fractional calculus operators with special functions. In: Handbook of
Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110. De Gruyter
(2019); doi:10.1515/9783110571622-004.
[15] Kiryakova, V. Unified
approach to fractional calculus images of special functions – A survey.
Mathematics, 8, Art. 2260; 35 pp. (2020), doi:10.3390/math8122260.
[16] Kiryakova, V. A guide to
special functions in fractional calculus. Mathematics, 9, No 1, Art. 106, 40
pp. (2021); doi:10.3390/math9010106.
[17] Kiryakova, V.; Luchko,
Yu. Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators. Central
Eur. J. Physics, 11, 1314–1336 (2013); doi:10.2478/s11534-013-0217-1.
[18] Kiryakova, V.;
Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdelyi-Kober fractional
integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le
Roy type. Intern. J. Appl. Math., 36, No 5, 605–623 (2023);
doi:10.12732/ijam.v36i5.2.
[19] Kiryakova, V.;
Paneva-Konovska, J. Going next after “A Guide to Special Functions in
Fractional Calculus”: A discussion survey. Mathematics, 12, Art. 319, 39 pp.
(2024); https://doi.org/10.3390/math12020319.
[20] Kober, H. On fractional
integrals and derivatives. Quart. J. Math. Oxford, ll,193–211 (1940).
[21] Le Roy, E. Valeurs
asymptotiques de certaines series procedant suivant les puissances ent`eres et
positives d’une variable reelle (In French). Darboux Bull. (2) 24, 245–268
(1900).
[22] Marichev, O.I. Handbook
of Integral Transforms of Higher Transcendental Functions, Theory and
Algorithmic Tables. Ellis Horwood, Chichester (1983); Transl. from Russian Ed.,
Method of Evaluation of Integrals of Special Functions (In Russian). Nauka i
Teknika, Minsk (1978).
[23] Meijer, C.S. On the
G-function. Indagationes Math., 8, 124–134; 213–225; 312–324; 391–400; 468–475;
595–602; 661–670; 713–723 (1946).
[24] Mittag-Leffler, M. G.:
Sur la nouvelle function E_{\alpha} (x). Comp. Rend. Acad. Sci. Paris (Ser.5),
137, 554–558 (1903).
[25] Paneva-Konovska, J. From
Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in
Them and Convergence. World Scientific Publ., London (2016); doi:10.1142/q0026.
[26] Paneva-Konovska, J.
Prabhakar function of Le Roy type: A set of results in the complex plane.
Fract. Calc. Appl. Anal., 26, No 1, 32–53 (2023); doi:10.1007/s13540-022-00116-1.
[27] Paneva-Konovska, J., Kiryakova,
V. The generalized Fox-Wright Function: Laplace transform, Erdelyi-Kober
fractional Integral, role in fractional calculus. Mathematics,
12,
Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.
[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.;
Dubatovskaya, M. Laplace transform (Part 1) of the multi-index
Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36,
No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.
[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I.
Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci.
Publ., N. York-London-Paris-Tokyo, etc. (1992).
[30] Rathie, A. A new generalization of the
generalized hypergeometric functions. Le Matematiche LII, No II, 297–310
(1997).
[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le
Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.
[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I.
Fractional Integrals and Derivatives: Theory and Applications. Gordon and
Breach, Switzerland etc. (1993).
[33] Slater, L.J. Generalized Hypergeometric
Functions. Cambridge Univ. Press, London-N. York (1966).
[34] Sneddon, I.N. The use in mathematical analysis of
Erdelyi-Kober operators and of some of their applications. In: Fractional
Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457),
Springer-Verlag, New York, 37–79 (1975).
[35] Vellaisamy, P.; Kataria, K.K. The I-function
distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian
Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.
[36] Yakubovich, S.; Luchko, Y. The Hypergeometric
Approach to Integral Transforms and Convolutions. Kluwer (1994).
·
IJAM
o
Home
o
Contents
o
Editorial Board
(c) 2024, Diogenes
Co, Ltd.; https://www.diogenes.bg/ijam/