IJAM: Volume 37, No. 4 (2024)

DOI: 10.12732/ijam.v37i4.1

 

GENERALIZED ERDELYI-KOBER

FRACTIONAL INTEGRALS

WITH I-FUNCTION AS KERNEL

 

V. Kiryakova 1, J. Paneva-Konovska 2,§

 

1,2 Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

’Acad. G. Bontchev’ Str., Block 8

Sofia – 1113, BULGARIA

 

 

Abstract.  The Erdelyi-Kober fractional integrals and derivatives are variants of the Riemann-Liuoville with very wide applications due to the freedom to chose their three arbitrary  parameters. In this paper we introduce and study a generalization of the Erdelyi-Kober operators of fractional integration where the elementary kernel-function is replaced by a suitably chosen

I^{1,0}_{1,1}-function. The I-functions are generalized hypergeometric functions, introduced by Rathie in 1997 as extensions of the Fox H-functions and Meijer G-functions, but have been not popular because of their rather complicated structure and multivalued behaviour. However, it happens that they are useful not only in statistical physics, but include also important special functions in mathematics. In our previous works we related the I-functions to some specific special functions of fractional calculus, among which analogues of the Mittag-Leffler and

Le Roy type functions. Here, we propose a theory of an I-function generalization of the Erdelyi-Kober fractional integrals, that will serve further as a base for further extension of the generalized fractional calculus with operators of fractional multi-order.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i4.1
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 4

References

[1] Braaksma, B.L.J. Asymptotic expansions and analytic continuation for a class of Barnes integrals. Compositio Math., 15, 239–341 (1962–1964).

[2] Buschman, R.G.; Srivastava, H.M. The H functions associated with  a certain class of Feynman integrals. J. Phys. A: Math. Gen., 23, 4707–4710 (1990).

[3] Erdelyi, A. On some functional transformations. Univ. Politec. Torino Rend. Semin. Math., 10, 217–234 (1950–1951).

[4] Erdelyi, A. (Ed.), Higher Transcendental Functions, 1 – 3. McGraw-Hill, New York-Toronto-London (1953–1955).

[5] Fox, Ch. The G and H-functions as symmetric Fourier kernels. Trans. Amer. Math. Soc., 98, 395–429 (1961).

[6] Gelfond, A.O.; Leontiev, A.F. On a generalization of the Fourier series (In Russian). Mat. Sbornik, 29 (71), 477–500 (1951).

[7] Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A.: Math. Gen. 20, 4119–4128 (1987).

[8] Kalla, S.L. Operators of fractional integration. In: Lecture Notes in Math., 798, 258–280 (1980).

[9] Karp, D. A note on Fox’s H-function in the light of Braaksma’s results, Ch.12 in: Special Functions and Analysis of Differential Equations (Eds. P. Agarwal, R.P. Agarwal, M. Ruzhansky). Chapman and Hall/ CRC, N. York (2020), 12 pp.; http://arxiv.org/abs/1904.10651v1.

[10] Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications. Ser. on Analytic Methods and Special Functions, 9, CRC Press, Boca Raton (2004).

[11] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier, Amsterdam etc. (2006).

[12] Kiryakova, V. Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow-N. York, 1994

[13] Kiryakova, V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions. AIP Conference Proc., 2048, # 050016, 10 pp. (2018); doi:10.1063/1.5082115.

[14] Kiryakova, V. Generalized fractional calculus operators with special functions. In: Handbook of Fractional Calculus with Applications, Vol. 1: Basic Theory, 87–110. De Gruyter (2019); doi:10.1515/9783110571622-004.

[15] Kiryakova, V. Unified approach to fractional calculus images of special functions – A survey. Mathematics, 8, Art. 2260; 35 pp. (2020), doi:10.3390/math8122260.

[16] Kiryakova, V. A guide to special functions in fractional calculus. Mathematics, 9, No 1, Art. 106, 40 pp. (2021); doi:10.3390/math9010106.

[17] Kiryakova, V.; Luchko, Yu. Riemann-Liouville and Caputo type multiple Erdelyi-Kober operators. Central Eur. J. Physics, 11, 1314–1336 (2013); doi:10.2478/s11534-013-0217-1.

[18] Kiryakova, V.; Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdelyi-Kober fractional integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math., 36, No 5, 605–623 (2023); doi:10.12732/ijam.v36i5.2.

[19] Kiryakova, V.; Paneva-Konovska, J. Going next after “A Guide to Special Functions in Fractional Calculus”: A discussion survey. Mathematics, 12, Art. 319, 39 pp. (2024); https://doi.org/10.3390/math12020319.

[20] Kober, H. On fractional integrals and derivatives. Quart. J. Math. Oxford, ll,193–211 (1940).

[21] Le Roy, E. Valeurs asymptotiques de certaines series procedant suivant les puissances ent`eres et positives d’une variable reelle (In French). Darboux Bull. (2) 24, 245–268 (1900).

[22] Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables. Ellis Horwood, Chichester (1983); Transl. from Russian Ed., Method of Evaluation of Integrals of Special Functions (In Russian). Nauka i Teknika, Minsk (1978).

[23] Meijer, C.S. On the G-function. Indagationes Math., 8, 124–134; 213–225; 312–324; 391–400; 468–475; 595–602; 661–670; 713–723 (1946).

[24] Mittag-Leffler, M. G.: Sur la nouvelle function E_{\alpha} (x). Comp. Rend. Acad. Sci. Paris (Ser.5), 137, 554–558 (1903).

[25] Paneva-Konovska, J. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in Them and Convergence. World Scientific Publ., London (2016); doi:10.1142/q0026.

[26] Paneva-Konovska, J. Prabhakar function of Le Roy type: A set of results in the complex plane. Fract. Calc. Appl. Anal., 26, No 1, 32–53 (2023); doi:10.1007/s13540-022-00116-1.

[27] Paneva-Konovska, J., Kiryakova, V. The generalized Fox-Wright Function: Laplace transform, Erdelyi-Kober fractional Integral, role in fractional calculus. Mathematics, 12,

Art. 1918, 25 pp. (2024); https://doi.org/10.3390/math12121918.

[28] Paneva-Konovska, J.; Kiryakova V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 36, No 4, 455–474 (2023); doi:10.12732/ijam.v36i4.2.

[29] Prudnikov, A.P.; Brychkov, Yu.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Sci. Publ., N. York-London-Paris-Tokyo, etc. (1992).

[30] Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche LII, No II, 297–310 (1997).

[31] Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal., 27, No 1, 64–81 (2024); https://doi.org/10.1007/s13540-023-00221-9.

[32] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Switzerland etc. (1993).

[33] Slater, L.J. Generalized Hypergeometric Functions. Cambridge Univ. Press, London-N. York (1966).

[34] Sneddon, I.N. The use in mathematical analysis of Erdelyi-Kober operators and of some of their applications. In: Fractional Calculus and Its Applications (Lecture Notes in Mathematics, Vol. 457), Springer-Verlag, New York, 37–79 (1975).

[35] Vellaisamy, P.; Kataria, K.K. The I-function distribution and its extensions. Teoria Veroyat-nostej i ee Primenenia (Russian Ed.), 63, 284–305 (2018), In Russian; doi:10.4213/tvp5184.

[36] Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer (1994).

 

·                IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/