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Abstract

In previous works, the control problem for the initial-boundary value prob-
lem in the interval for such a pseudo-parabolic type equation was studied. That
is, the Dirichlet boundary value problem was considered. In this work we con-
sider control problem for a homogeneous pseudo-parabolic type equation. In
the part of the bound of the given region it is given value of the derivative of
the solution with the respect to the normal and it is required to find control
to get the average value of solution. By the Laplace transform method it is
proved that like this control exists.
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1. Introduction

Consider the pseudo-parabolic equation in the domain Ω = {(x, t) : 0 <
x < a, t > 0}:

∂u

∂t
=

∂3u(x, t)

∂x2∂t
+

∂2u(x, t)

∂x2
, (x, t) ∈ Ω, (1)

with boundary value conditions

ux(0, t) = −h(t), ux(a, t) + γ u(a, t) = 0, t > 0, (2)

and initial value condition

u(x, 0) = 0, 0 ≤ x ≤ a, (3)

where γ = const > 0.

The equation (1) was called the pseudo-parabolic equation by “R.E. Showal-
ter and T.W. Ting” (see, [1]) from the following considerations: a) correctly
posed initial boundary value problems for a parabolic equation are also cor-
rectly posed for equation (1), b) in some cases, the solution of the initial-
boundary value problem can be obtained as the limit of the corresponding
solution of the problem for pseudo-parabolic equations.

The condition (2) means that there is a magnitude of output given by a
measurable real-valued function h(t).

Definition 1.1. If function h(t) ∈ W 1
2 (R+) satisfies the conditions

h(0) = 0 and |h(t)| ≤ 1, we say that this function is an admissible control.

Problem A. For the given function f(t) Problem A consists looking for
the admissible control h(t) such that the solution u(x, t) of the initial-boundary
problem (1)-(3) exists and for all t ≥ 0 satisfies the equation

a∫
0

u(x, t) dx = f(t). (4)

The tasks of impulse control, i.e. the case of delta-like distribution for
systems with distributed parameters was the subject of study in works [2, 3].
One of the models is the theory of incompressible simple fluids with decaying
memory, which can be described by equation (1) (see [4]). In [5], stability,
uniqueness, and availability of solutions of some classical problems for the
considered equation were studied (see also [6, 7]). Point control problems for
parabolic and pseudo-parabolic equations were considered.

It is known that the problem of optimal control for parabolic type equa-
tions was first studied in [8] and [9]. In [10, 11, 12], boundary control prob-
lems for parabolic equation were studied in an n−dimensional domain with
a piecewise smooth boundary. In these works, an estimate was found for the
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minimum time required to reach a given average temperature. The latest re-
sults on boundary control problems for parabolic type equations are studied in
works [13, 14, 15, 16, 17, 18]. More information on the optimal control prob-
lems for distributed parameter systems is given in [19] and in the monographs
[20, 21, 22].

In [23, 24, 25], boundary control problems for pseudo-parabolic type equa-
tions were studied. These works mainly deal with the boundary control prob-
lem for the Dirichlet problem.

General numerical optimization and optimal boundary control have been
studied in a great number of publications such as [26]. The practical ap-
proaches to optimal control of the heat conduction equation are described in
publications like [27].

In previous works, boundary control problems for pseudo-parabolic equa-
tion were also considered. For example, the control problem of the inhomoge-
neous pseudo-parabolic equation was studied in [24]. In our work, it is proved
that the control function exists when the boundary condition is type 3. The
problem presented in Section 2 is reduced to a Volterra integral equation of
the second kind. Finally, the desired value for the kernel is obtained, and the
existence of the control function is proved using the Laplace transform method
in Section 3.

2. Integral equation

We now consider the eigenvalue problem{
X ′′

k (x) = −μk Xk(x), 0 < x < a,

X ′
k(0) = 0, X ′

k(a) + γ Xk(a) = 0, 0 ≤ x ≤ a,

where γ = const > 0.

We set
√
μk = λk. Then we have Xk(x) = cos λkx, k = 1, 2, .... Here,

eigenvalue λk is the solution of this equation λk · tanλka = γ (see, [28]).

Definition 2.1. By the solution of the problem (1)–(3) we understand
the function u(x, t) represented in the form

u(x, t) =
(a− x)2

2a
h(t)− w(x, t), (5)

where the function w(x, t) ∈ C2,1
x,t (Ω)∩C(Ω̄), wx ∈ C(Ω̄) is the solution to the

problem:

wt − wxxt − wxx =
(a− x)2

2a
h′(t)− 1

a
h(t)− 1

a
h′(t),

with boundary conditions

wx(0, t) = 0, wx(a, t) + γ w(a, t) = 0,
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and initial condition w(x, 0) = 0.

Then we have (see, [28, 29])

w(x, t) =
∞∑
k=1

cos λkx

1 + λ2
k

t∫
0

e−qk (t−s)
(
h′(s) bk − h(s) ck

)
ds, (6)

where qk =
λ2
k

1+λ2
k
and

bk =
2

aλ2
k

− 2(1 + λ2
k) sinλka

a2 λ3
k

, ck =
2

a2 λk
sinλka.

By (5) and (6) we get the solution of the initial-boundary problem (1)–(3):

u(x, t) =
(a− x)2

2a
h(t)

−
∞∑
k=1

cos λkx

1 + λ2
k

t∫
0

e−qk (t−s)
(
h′(s) bk − h(s) ck

)
ds. (7)

By (4) and (7) we can write

f(t) =

a∫
0

u(x, t)dx = h(t)

a∫
0

(a− x)2

2a
dx

−
∞∑
k=1

bk sinλka

λk(1 + λ2
k)

t∫
0

e−qk (t−s) dh(s)

+

∞∑
k=1

ck sinλka

λk(1 + λ2
k)

t∫
0

e−qk (t−s)h(s) ds.

Note that
a∫

0

(a− x)2

2a
dx =

∞∑
k=1

(
2

aλ2
k

− 2 sinλka

a2λ3
k

)
sinλka

λk
.

Considering the above and h(0) = 0, we get the following

f(t) = h(t)

∞∑
k=1

2 sinλka

aλk(1 + λ2
k)

+

∞∑
k=1

2 sinλka

aλk(1 + λ2
k)

2

t∫
0

e−qk (t−s)h(s) ds.

Set

α =
∞∑
k=1

2 sinλka

aλk(1 + λ2
k)
, βk =

2 sinλka

aλk(1 + λ2
k)

2
.
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and

L(t) =
∞∑
k=1

βk e
−qk t, t > 0. (8)

Then we have the following Volterra integral equation

αh(t) +

t∫
0

L(t− s)h(s) ds = f(t). (9)

It is clear that sinλka > 0. Indeed, according to λk · tan λka = γ, we get

sinλka =
γ√

λ2
k + γ2

, where γ = const > 0.

Proposition 2.1. A function L(t) defined by (8) is continuous on the
half-line t ≥ 0.

P r o o f. Indeed, according to (8), we can write

0 < L(t) ≤ const

∞∑
k=1

βk.

�

Denote by W (M) the set of function f ∈ W 2
2 (−∞,+∞), f(t) = 0 for t ≤ 0

which satisfies the condition

‖f‖W 2
2 (R+) ≤ M.

Theorem 2.1. There exists M > 0 such that for any function f ∈ W (M)
the solution h(t) of the equation (9) exists, and satisfies condition

|h(t)| ≤ 1.

3. Proof of the Theorem 2.1

We write integral equation (9)

αh(t) +

t∫
0

L(t− s)h(s)ds = f(t), t > 0.

By definition of the Laplace transform we have

h̃(p) =

∞∫
0

e−pt h(t) dt.
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Applying the Laplace transform to the second kind Volterra integral equa-
tion (9) and taking into account the properties of the transform convolution
we get

f̃(p) = α h̃(p) + L̃(p) h̃(p).

Consequently, we obtain

h̃(p) =
f̃(p)

α+ L̃(p)
, where p = δ + iξ, δ > 0,

and

h(t) =
1

2πi

δ+iξ∫
δ−iξ

f̃(p)

α+ L̃(p)
eptdp

=
1

2π

+∞∫
−∞

f̃(δ + iξ)

α+ L̃(δ + iξ)
e(δ+iξ)tdξ. (10)

Then we can write

L̃(p) =

∞∫
0

L(t) e−pt dt

=

∞∑
k=1

βk

∞∫
0

e−(p+qk)t dt =

∞∑
k=1

βk
p+ qk

,

where

L̃(δ + iξ) =
∞∑
k=1

βk
δ + qk + iξ

=
∞∑
k=1

βk (δ + qk)

(δ + qk)2 + ξ2
− iξ

∞∑
k=1

βk
(δ + qk)2 + ξ2

.

We know that

(δ + qk)
2 + ξ2 ≤ [(δ + qk)

2 + 1](1 + ξ2),

and we have the inequality

1

(δ + qk)2 + ξ2
≥ 1

1 + ξ2
1

(δ + qk)2 + 1
. (11)

Consequently, according to (11) we can obtain the estimates

|Re(α+ L̃(δ + iξ))| = α+
∞∑
k=1

βk (δ + qk)

(δ + qk)2 + ξ2

≥ 1

1 + ξ2

∞∑
k=1

βk (δ + qk)

(δ + qk)2 + 1
=

C1δ

1 + ξ2
, (12)
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and

|Im(α + L̃(δ + iξ))| = |ξ|
∞∑
k=1

βk
(δ + qk)2 + ξ2

≥ |ξ|
1 + ξ2

∞∑
k=1

βk
(δ + qk)2 + 1

=
C2δ |ξ|
1 + ξ2

, (13)

where C1δ, C2δ as follows

C1δ =

∞∑
k=1

βk (δ + qk)

(δ + qk)2 + 1
, C2δ =

∞∑
k=1

βk
(δ + qk)2 + 1

.

From (12) and (13), we have the estimate

|α+ L̃(δ + iξ)|2 = |Re(α+ L̃(δ + iξ))|2 + |Im(α+ L̃(δ + iξ))|2

≥ min(C2
1δ , C

2
2δ)

1 + ξ2
,

and

|α+ L̃(δ + iξ)| ≥ Cδ√
1 + ξ2

, (14)

where Cδ = min(C1δ, C2δ).

Then, by passing to the limit at δ → 0 from (10), we can obtain the
equality

h(t) =
1

2π

+∞∫
−∞

f̃(iξ)

α+ L̃(iξ)
eiξtdξ. (15)

�

Theorem 3.1. Let f(t) ∈ W (M). Then for the image of the function
f(t) the following inequality

+∞∫
−∞

|f̃(iξ)|
√

1 + ξ2dξ ≤ C ‖f‖W 2
2 (R+),

is valid.

P r o o f. It is known that the following relation is valid for the Laplace
transform of the function f(t):

(δ + iξ) f̃(δ + iξ) =

∞∫
0

e−(δ+iξ)t f ′(t) dt,
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and for δ → 0 we have

iξ f̃(iξ) =

∞∫
0

e−iξt f ′(t) dt.

Also, we can write the following equality

(iξ)2 f̃(iξ) =

∞∫
0

e−iξt f ′′(t) dt.

Then we have
+∞∫

−∞
|f̃(iξ)|2(1 + ξ2)2dξ ≤ C ‖f‖2W 2

2 (R+). (16)

Consequently, according to (16) we get the following estimate

+∞∫
−∞

|f̃(iξ)|
√

1 + ξ2dξ =

+∞∫
−∞

|f̃(iξ)|(1 + ξ2)√
1 + ξ2

≤
( +∞∫
−∞

|f̃(iξ)|2(1 + ξ2)2dξ

)1/2( +∞∫
−∞

1

1 + ξ2
dξ

)1/2

≤ C ‖f‖W 2
2 (R+).

�

P r o o f o f T h e o r em 2.1. We prove that h ∈ W 1
2 (R+). Indeed, accord-

ing to (14) and (15), we obtain

+∞∫
−∞

|h̃(ξ)|2(1 + |ξ|2) dξ =

+∞∫
−∞

∣∣∣∣∣ f̃(iξ)

α+ L̃(iξ)

∣∣∣∣∣
2

(1 + |ξ|2) dξ

≤ C

+∞∫
−∞

|f̃(iξ)|2(1 + |ξ|2)2 dξ = C‖f‖2W 2
2 (R).

Further,

|h(t)− h(s)| =

∣∣∣∣∣∣
t∫

s

h′(τ) dτ

∣∣∣∣∣∣ ≤ ‖h′‖L2

√
t− s.

Hence, h ∈ Lipα, where α = 1/2. Then from (14), (15) and Theorem 3.1,
we have

|h(t)| ≤ 1

2π

+∞∫
−∞

|f̃(iξ)|
|α+ L̃(iξ)|

dξ ≤ 1

2πC0

+∞∫
−∞

|f̃(iξ)|
√

1 + ξ2dξ
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≤ C

2πC0
‖f‖W 2

2 (R+) ≤
CM

2πC0
= 1,

as M we took M = 2πC0
C .

Thus Theorem 2.1 is proved. �

4. Conclusions

In this work, we considered a control problem for a pseudo-parabolic type
equation in an interval. The existence of such a control function was proved
using the method of Laplace transform. We believe that this boundary control
problem can be considered later on rectangular and smooth domain.
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