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Abstract

In this paper, we study the spatial Tricomi problem for a three-dimensional
equation of mixed type with a singular coefficient in a domain whose elliptical
part is a quarter of a cylinder, and whose hyperbolic part is a triangular right
prism. The study of the problem is carried out using the method of separation
of variables and spectral analysis. The solution to the considered problem is
constructed as a sum of a double series. To justify the uniform convergence of
the constructed series, asymptotic estimates of the Bessel and Gauss functions
were used. On their basis, estimates were obtained for each member of the
series, which made it possible to prove the convergence of the resulting series
and its derivatives up to the second order inclusive, as well as the existence
theorem in the class of regular solutions.
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1. Introduction. Problem statement

The study of boundary value problems for mixed-type equations is one of
the central problems of the theory of partial differential equations of its applied
importance. For the first time, F.I. Frankl [1] found important applications of
these problems in gas dynamics, and I.N. Vekua [2] pointed out the importance
of the problem of mixed-type equations in solving problems arising in the
momentless theory of shells.

So far, the studies of boundary value problems for mixed-type equations
with singular coefficients have been carried out mainly in the case of two
independent variables. However, such problems in three-dimensional domains
remain poorly studied.

The Tricomi problem for a mixed elliptic-hyperbolic equation in three-
dimensional space using the method of integral Fourier transform was first
studied in [3]. After this work, a number of works appeared in which boundary
value problems for various elliptic-huperbolic equations in three-dimensional
domains were considered (see, for example, [4], [5], [6], [7], [8], [9], [10], [11],
[12]).

In this paper, we study the spatial Tricomi problem for a three-dimensional
mixed type equation with singular coefficient in a region whose elliptic part is
a quarter cylinder and whose hyperbolic part is a triangular straight prism.

Let Ω = {(x, y, z) : (x, y) ∈ Δ, z ∈ (0, c)}, where Δ is the
finite one-connected domain of the plane xOy, bounded for y ≥ 0 by the arc
σ̄0 =

{
(x, y) : x2 + y2 = 1, x ≥ 0, y ≥ 0

}
and segment OM = {(x, y) : x = 0,

0 ≤ y ≤ 1} and for y ≤ 0 by segments OQ = {(x, y) : x+ y = 0, 0 ≤ x ≤ 1/2}
and QP = {(x, y) : x− y = 1, 1/2 ≤ x ≤ 1} , O = O (0, 0) , M = M (0, 1) ,
P = P (1, 0) , Q = Q (1/2,−1/2) .

Let us introduce the notations: Ω0 = Ω∩ (y > 0), Ω1 = Ω∩ (y < 0) , Δ0 =
Δ ∩ (y > 0) , Δ1 = Δ ∩ (y < 0) , S0 = {(x, y, z) : σ0 × (0, c)} , S1 = {(x, y, z) :
OM × (0, c)} , S̄2 =

{
(x, y, z) : OQ× [0, c]

}
, S̄3 =

{
(x, y, z) : Ω̄ ∩ (z = 0)

}
,

S̄4 =
{
(x, y, z) : Ω̄ ∩ (z = c)

}
.

In the domain Ω consider the equation

Uxx + (sgny)Uyy + Uzz +
2γ

z
Uz = 0, (1)

where γ is parameter such that γ ∈ (0, 1/2).

In the domain Ω equation (1) belongs to a mixed type, namely in the
domain Ω0 elliptic type, and in the domain Ω1 – hyperbolic type, and z = 0
are the planes of singularity of the equation, and when passing through the
rectangle Ω̄0 ∩ Ω̄1 the equation changes its type.

We investigate the following problem for equation (1) in the domain Ω.
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Problem T (Tricomi problem). Find a function U (x, y, z), satisfying
in the domain Ω equation (1) and the following conditions:

U ∈ C
(
Ω̄
) ∩ C2,2,2

x,y,z (Ω0 ∪Ω1) , Ux, Uy, z
2γUz ∈ C

(
Ω̄0

)
, (2)

U (x, y, z)|S0
= F (x, y, z) , (3)

U (x, y, z)|S1
= 0, U (x, y, z)|S̄2

= 0, (4)

U (x, y, z)|S̄3
= 0, U (x, y, z)|S̄4

= 0, (5)

as well as the gluing condition

Uy (x,−0, z) = Uy (x,+0, z) , x ∈ (0, 1) , z ∈ (0, c) , (6)

where F (x, y, z) is a given function.

Note that the considered problem at γ = 0 was studied in [13].

2. Construction of particular solutions of equation (1) in the
domain of hyperbolicity and ellipticity of the equation

We find nontrivial solutions of equation (1) satisfying conditions (4) and
(5). Separating the variables by the formula U (x, y, z) = w (x, y)Z (z), from
equation (1) and boundary conditions (4) and (5), we obtain the following
problems:

wxx + (sgny)wyy − λw = 0, (x, y) ∈ Δ ∩ {x > 0} , (7)

w (0, y) = 0, y ∈ (0, 1); w (x,−x) = 0, x ∈ [0, 1/2] , (8)

Z ′′ (z) +
2γ

z
Z ′ (z) + λZ (z) = 0, Z (0) = 0, Z (c) = 0, z ∈ (0, c). (9)

Problem (9) has nontrivial solutions of the form [14], [15], [16]

Zm (z) = z1/2−γJ1/2−γ (σmz/c) , m ∈ N, (10)

where Jl (z) is the Bessel function [17] and σm m is the positive root of the

equation, J1/2−γ

(√
λc
)
= 0, λm = (σm/c)2, m ∈ N.

According to [17], the system of eigenfunctions (10) is orthogonal and
complete in space L2 (0, c) with the weight z2γ .

Now, consider the problem {(7), (8)} when λ = λm in the domain Δ1, i.e.,
consider the following problem:

wxx − wyy − λmw = 0, (x, y) ∈ Δ1, (11)

w (x,−x) = 0, x ∈ [0, 1/2] . (12)
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We search the solution to this problem in the following form

w (x, y) = X (ξ)Y (η) , (13)

where ξ =
√

x2 − y2, η = x2/ξ2.
Then, with respect to the functionsX (ξ) and Y (η) we obtain the following

conditions, X (0) = 0,

∣∣∣∣ lim
η→+∞Y (η)

∣∣∣∣ < +∞ and equations

ξ2X ′′ (ξ) + ξX ′ (ξ)− [λmξ2 + μ
]
X (ξ) = 0, ξ > 0, (14)

η (1− η)Y ′′ (η) + [1/2− η]Y ′ (η) +
1

4
μY (η) = 0, η > 1, (15)

where μ ∈ R is the parameter of the separation.
Solutions of equation (14) satisfying the condition X (0) = 0, exist at μ > 0

and they (with accuracy to a constant multiplier) have of the form [17]

X (ξ) = Iω (σmξ/c) , m ∈ N, (16)

where ω =
√
μ, Il (x) is the Bessel function of an imaginary argument of order

l [17].
(15) is a hypergeometric Gaussian equation [18]. Its general solution is

defined by the formula [18]

Y (η) = c1η
−ω/2F (ω/2, 1/2 + ω/2, 1 + ω; 1/η) +

+c2η
ω/2F (−ω/2, 1 − ω/2, 1 − ω; 1/η) , (17)

where c1, c2 are arbitrary constants.
ω > 0 it since follows from (17) that in order to obtain the function

bounded at η → +∞, we need to put c2 = 0 in the formula, as a result of
which, we get

Y (η) = c1η
−ω/2F (ω/2, 1/2 + ω/2, 1 + ω; 1/η) . (18)

Consequently, continuous and nontrivial in Δ̄1 solution of the problem
{(11), (12)}, according to (13), (16) and (18) are defined by the formulas

w−
m (x, y)

= c1η
−ω/2F (ω/2, (1 + ω) /2, 1 + ω; 1/η) Iω (σmξ/c) , (19)

where c1 
= 0, m ∈ N.
Hence, we find⎧⎪⎪⎨
⎪⎪⎩

τ−m (x) = lim
y→−0

w−
m (x, y) = c12

ωIω

(σmx

c

)
, x ∈ [0, 1] ,

ν−m (x) = lim
y→−0

∂

∂y
w−
m (x, y) =

2ωc1ω

x
Iω

(σmx

c

)
, x ∈ (0, 1) ,

(20)

where Γ (z) is the Euler’s gamma-function [18].
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Now, consider the problem {(7), (8)} in case λ = λm in the domain Δ0,
i.e., consider the following problem:

wxx + wyy − λmw = 0, (x, y) ∈ Δ0, (21)

w (0, y) = 0, y ∈ (0, 1). (22)

Separating the variables by formula

w (x, y) = Q (ρ)S (ϕ) , (23)

where ρ =
√

x2 + y2, ϕ = arctg (y/x) , from equation (21) and conditions
w ∈ C

(
Δ̄0

)
, (22), we obtain the following problems:

ρ2Q′′ (ρ) + ρQ′ (ρ)−
[
(σmρ/c)2 + μ̃

]
Q (ρ) = 0, ρ ∈ (0, 1) , (24)

|Q (0)| < +∞, (25)

S′′ (ϕ) + μ̃ S (ϕ) = 0, ϕ ∈ (0, π/2) , (26)

S (π/2) = 0, (27)

where μ̃ ∈ R is the separation constant.
We first study the problem {(24), (25)}. The general solution of equation

(24) is defined in the form [17]

Qm (ρ) = c3Iω̃ (σmρ/c) + c4Kω̃ (σmρ/c) , ρ ∈ [0, 1], (28)

where ω̃ =
√
μ̃, c3 and c4 are arbitrary constants, Kl (x) is a MacDonald

function of order l [17].
It follows from (28) that solutions of equation (24), satisfying condition

(25), exist μ̃ ≥ 0 at and they are defined by equations

Qm (ρ) = c3Iω̃ (σmρ/c) , ω̃ ≥ 0, m ∈ N. (29)

Now, let us study the problem {(26), (27)}. The general solution of equa-
tion (26) is

S (ϕ) = c5 cos (ω̃ϕ) + c6 sin (ω̃ϕ) , (30)

where c5 and c6 are arbitrary constants.
Satisfying the function (30) to the condition (27), we obtain c6 = k3 (ω̃) c5,

where k3 (ω̃) = −ctg (ω̃π/2) . Substituting c6 = k3 (ω̃) c5 into (30) and assum-
ing c5 = 1 (this does not violate generality), we have

S (ϕ) = cos (ω̃ϕ)− ctg (ω̃π/2) sin (ω̃ϕ) . (31)

Based on (23), (29) and (31), we conclude that the continuous and non-
trivial in Δ̄0 solution of the problem {(21), (22)}, has the form

w+
m (x, y) = c3Iω̃ (σmρ/c) [cos (ω̃ϕ)− ctg (ω̃π/2) sin (ω̃ϕ)] , (32)
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where c3 
= 0, m ∈ N .
Hence, by direct calculation, one can find⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ+m (x) = lim
y→+0

w+
m (x, y) = c3Iω̃ (σmx/c) , x ∈ [0, 1] ;

ν+m (x) = lim
y→+0

∂

∂y
w+
m (x, y) =

= −c3ω̃ctg (ω̃π/2) x
−1Iω̃ (σmx/c) , x ∈ (0, 1) .

(33)

Then, based on U (x, y, z) = w (x, y)Z (z) and the notation introduced,
the following equations follow from the conditions and U (x, y, z) ∈ C

(
Ω̄
)
and

(6): {
τ−m (x) = τ+m (x) , x ∈ [0, 1] ,

ν−m (x) = ν+m (x) , x ∈ (0, 1) .
(34)

Substituting (20) and (33) into (34) and assuming ω = ω̃, we have a
homogeneous system of equations with respect to c1 and c3:{

2ωc1 + ctg
ωπ

2
c3 = 0,

2ωc1 − c3 = 0.
(35)

From the system (35), we find ctg
ωπ

2
= −1. Writing out the solutions of

this equation and taking into account the condition ω > 0 we find

ωn = 2n− 1/2, n ∈ N. (36)

Based on (36), the numbers μn = ω2
n, n ∈ N are the eigenvalues of prob-

lems {(15),
∣∣∣∣ lim
η→+∞Y (η)

∣∣∣∣ < +∞} and {(26), (27)}.
Note that at ω = ωn the function S (ϕ), defined by the equality (31), will

be written in the form

Sn (ϕ) =
√
2 sin

[(
2n− 1

2

)
ϕ+

π

4

]
. (37)

In [19], it was proved that the system of eigenfunctions (37) forms a basis
in the space L2 (0, π/2).

Taking into account the above proved and equality (19), (32), ω = ω̃ = ωn,
we conclude that the functions

wnm (x, y)



A PROBLEM FOR A . . . 79

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c3
√
2 sin

[(
2n− 1

2

)
ϕ+

π

4

]
×

×I2n− 1
2

(σmρ

c

)
, (x, y) ∈ Δ̄0,

c3
2ωn

(
1

η

)ωn
2

F

(
n− 1

4
, n+

1

4
, 2n +

1

2
;
1

η

)
×

×I2n− 1
2

(
σmξ

c

)
, (x, y) ∈ Δ̄1,

(38)

are continuous and nontrivial in Δ̄ solution of the problem {(7), (8)}.
Then, the functions

Unm (x, y, z) = wnm (x, y)Zm (z) , n,m ∈ N, (39)

where Zm (z) and wnm (x, y) are the functions defined by equalities (10) and
(38) respectively, continuous and nontrivial in Ω solutions of equation (1)
satisfying conditions (4)-(5).

3. Singularity of the solution of the problem T

Let U (x, y, z) = V (ρ, ϕ, z) is solution the problem T in the domain Ω0

and satisfy the condition

Vϕ (ρ, 0, z) = ωnV (ρ, 0, z) , (40)

where ρ, ϕ, z are the cylindrical coordinates, related to Cartesian coordinates

by the equations, ρ =
√

x2 + y2, ϕ = arctg (y/x) , z = z.
In these coordinates, equations (1) and condition (3) are written in the

form

Vρρ +
1

ρ2
Vϕϕ +

1

ρ
Vρ + Vzz +

2γ

z
Vz = 0, (ρ, ϕ, z) ∈ Ω̃, (41)

V (1, ϕ, z) = f (ϕ, z) , ϕ ∈ [0, π/2] , z ∈ [0, c] , (42)

where Ω̃ = {(ρ, ϕ, z) : ρ ∈ (0, 1) , ϕ ∈ (0, π/2) , z ∈ (0, c)} , f (ϕ, z) = F (cosϕ, sinϕ, z) .
Using V (ρ, ϕ, z) and eigenfunctions (10), (37), let us compose the following

function:

ζnm (ρ) = dm

c∫
0

π/2∫
0

V (ρ, ϕ, z) Sn (ϕ) z
2γZm (z) dϕdz, (43)

where dm = 2/
[
cJ3/2−γ (σm)

]2
, n,m ∈ N.

Based on (43), we introduce the functions

ζε1ε2nm (ρ) = dm

c−ε2∫
ε2

π/2−ε1∫
ε1

V (ρ, ϕ, z) Sn (ϕ) z
2γZm (z) dϕdz, (44)
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where ε1 and ε2 are sufficiently small positive numbers.
Obviously,

lim
ε1,ε2→0

ζε1ε2nm (ρ) = ζnm (ρ) .

From (44), we find

(
∂2

∂ρ
+

1

ρ

∂

∂ρ

)
ζε1ε2nm (ρ):

(
∂2

∂ρ
+

1

ρ

∂

∂ρ

)
ζε1ε2nm (ρ)

= dm

c−ε1∫
ε1

π/2−ε2∫
ε2

(
∂2

∂ρ
+

1

ρ

∂

∂ρ

)
V (ρ, ϕ, z) Sn (ϕ) z

2γZm (z) dϕdz.

Taking into account equations (41), from the latter, we have(
∂2

∂ρ
+

1

ρ

∂

∂ρ

)
ζε1ε2nm (ρ)

= −dm
ρ2

c−ε2∫
ε2

⎡
⎢⎣

π/2−ε1∫
ε1

VϕϕSn (ϕ) dϕ

⎤
⎥⎦ z2γZm (z) dz

−dm

π/2−ε1∫
ε1

⎡
⎣ c−ε2∫

ε2

(
Vzz +

2γ

z
Vz

)
z2γZm (z) dz

⎤
⎦Sn (ϕ) dϕ.

Applying the rule integration by parts from the last, we obtain(
∂2

∂ρ
+

1

ρ

∂

∂ρ

)
ζε1ε2nm (ρ)

= −dm
ρ2

c−ε2∫
ε2

{{[
VϕSn (ϕ)− V S′

n (ϕ)
]}∣∣ϕ=π/2−ε1

ϕ=ε1

−μn

π/2−ε1∫
ε1

V (ρ, ϕ, z) Sn (ϕ)dϕ

⎫⎪⎬
⎪⎭ z2γZm (z) dz

−dm

π/2−ε1∫
ε1

{{[
Vz (ρ, ϕ, z)Zm (z)− V (ρ, ϕ, z)Z ′

m (z)
]
z2γ
}∣∣z=c−ε2

z=ε2

−(σγm/c)2
c−ε2∫
ε2

V (ρ, ϕ, z) z2γZm (z) dz

⎫⎬
⎭Sn (ϕ) dϕ. (45)
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Hence, passing to the limit as, ε1 → 0, ε2 → 0 and considering (2), (4),
(5), (27), (40) and boundary conditions of the problems (9), as well as the
notation (43), we obtain the equality

ζ ′′nm (ρ) +
4β + 1

ρ
ζ ′nm (ρ)−

(
λm − μn

ρ2

)
ζnm (ρ) = 0, ρ ∈ (0, 1).

Hence, the function ζnm (ρ) satisfies the differential equation (24) for μ =
μn.

Moreover, due to the boundary conditions (3), it follows from (43) that
the function ζnm (ρ) satisfies the following boundary conditions:

ζnm (1) = fnm, (46)

where

fnm = dm

c∫
0

π/2∫
0

f (ϕ, z) Sn (ϕ) z
2γZm (z) dϕdz. (47)

Consequently, the function ζnm (ρ) , defined by equality (43), satisfies equa-
tion (24) at μ̃ = μn and conditions (25), (46). Therefore, by subjecting the gen-
eral solution (28) of equation (24) to these conditions, we find the coefficients c3
and c4 :
c3 = fnm/Iωn (σm/c), c4 = 0.

Substituting these values into (28), we unambiguously find the function
ζnm (ρ)

ζnm (ρ) = Iωn(σmρ/c)fnm/Iωn(σm/c). (48)

Now, we shall prove the following theorem.

Theorem 3.1. If a solution to problem T exists if condition (40) is
satisfied, then it is unique.

P r o o f. For this, it is sufficient to prove that the homogeneous prob-
lem T , has only a trivial solution. Let f (ϕ, z) ≡ 0. Then fnm = 0 for all
n,m ∈ N . By virtue of this equality, it follows from (48) and (43) that
c∫
0

π/2∫
0

V (ρ, ϕ, z) Sn (ϕ) z
2γZm (z) dϕdz = 0. Hence, by virtue of the complente-

ness of the system of functions (10) with the weight z2γ in the space L2 (0, c)

and V (ρ, ϕ, z) ∈ C
(
¯̃Ω
)

it follows that,
π/2∫
0

V (ρ, ϕ, z) Sn (ϕ) dϕ = 0, n ∈ N.

Given the completeness of the system of functions (37) in the space L2 (0, π/2)

and V (ρ, ϕ, z) ∈ C
(
¯̃Ω
)
, it follows from the last equality that V (ρ, ϕ, z) ≡ 0

in ¯̃Ω.
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Using this equality and U (x, y, z) = V (ρ, ϕ, z) , it is easy to see that
U (x,+0, z) ≡ 0, Uy (x, 0, z) ≡ 0, x ∈ [0, 1] , z ∈ [0, c] .

Then, by virtue of U (x, y, z) ∈ C
(
Ω
)
, the following equations are true

U (x,−0, z) ≡ 0, Uy (x,−0, z) ≡ 0, x ∈ [0, 1] , z ∈ [0, c] . (49)

It follows from the results of [20] that the solution of equation

Uxx − Uyy + Uzz +
2γ

z
Uz = 0, (x, y, z) ∈ Ω1

satisfying conditions (49) is identically zero, i.e., U (x, y, z) ≡ 0, (x, y, z) ∈ Ω̄1.
Theorem 1 is proved. �

4. Construction and justification of the solution to the problem T

Substituting the values c3 = fnm/Iωn (σm/c) to equality (38), and then
the obtained function in (39), we find partial solutions of the problem T in
the form of

Unm (x, y, z) =

{
U+
nm (x, y, z) , (x, y, z) ∈ Ω̄0, n,m ∈ N,

U−
nm (x, y, z) , (x, y, z) ∈ Ω̄1, n,m ∈ N,

where

U+
nm (x, y, z) = Zm (z) ζnm (ρ)Sn (ϕ) , (x, y, z) ∈ Ω̄0, (50)

U−
nm (x, y, z) = 2−ωnZm (z)Xnm (ξ)Yn (η) , (x, y, z) ∈ Ω̄1, (51)

Xnm (ξ) =
I2n−1/2 (σmξ/c) fnm

I2n−1/2 (σm/c)
, ξ =

√
x2 − y2, (52)

Yn (η) =

(
1

η

)n−1/4

F

(
n− 1

4
, n+

1

4
, 2n +

1

2
;
1

η

)
, η =

x2

ξ2
, (53)

and Zm (z)Sn (ϕ) fnm and ζnm (ρ) are defined by the equations (10), (37),
(47) and (48) respectively.

Theorem 4.1. If f (ϕ, z) satisfies the following conditions:

I. f (ϕ, z) ∈ C4,5
ϕ,z

(
Π̄
)
, where Π = {(ϕ, z) : ϕ ∈ (0, π/2), z ∈ (0, c)};

II.
∂j

∂ϕj
f (ϕ, z)

∣∣∣∣
ϕ=0

= 0,
∂j

∂ϕj
f (ϕ, z)

∣∣∣∣
ϕ=π/2

= 0, j = 0, 3;

III.
∂j

∂zj
f (ϕ, z)|z=0 = 0,

∂j

∂zj
f (ϕ, z)|z=c = 0, j = 0, 4.
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Then the solution of the problem T exists and is defined by the formula

U (x, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=1

∞∑
m=1

U+
nm (x, y, z) , (x, y, z) ∈ Ω̄0,

∞∑
n=1

∞∑
m=1

U−
nm (x, y, z) , (x, y, z) ∈ Ω̄1,

(54)

where U+
nm (x, y, z) , U−

nm (x, y, z) are functions defined by formulas (50) and
(51), respectively.

Before proceeding to the proof of this theorem, let us prove some lemmas.

Lemma 1. If γ ∈ (0, 1/2), then the following estimates are valid with
respect to the functions Zm (z), defined by equations (10), for z ∈ [0, c] and
sufficiently large m:

|Zm (z)| ≤ c5z
1−2γ(σm)1/2−γ , (55)

∣∣z2γZ ′
m (z)

∣∣ ≤ c6(σm)1/2, (56)

∣∣∣Bz
γ−1/2Zm (z)

∣∣∣ ≤ c7z
1−2γ(σm)5/2−γ , (57)

where cj , j = 5, 7 are positive constants, By
q ≡ ∂2

∂y2
+

2q + 1

y

∂

∂y
is Bessel

operator [21].

P r o o f. Let us rewrite the function Zm (z) in the from

Zm (z) =
(2c)γ−1/2

Γ (3/2 − γ)
z1−2γ(σm)1/2−γ J̄1/2−γ (σmz/c) , (58)

where J̄ν (z) is the Bessel-Clifford function [22]:

J̄ν (z) = Γ (ν + 1) (z/2)−νJν (z) =
∞∑
j=0

(−z2/4
)j

(ν + 1)jj!
.

The function J̄ν (z) is even and infinitely differentiable. Moreover, we have
the equality J̄ν (0) = 1 and the inequality

∣∣J̄ν (z)∣∣ ≤ 1 for all ν > −1/2.
Considering this and 1/2 − α > 0, from equality (58), we get the estimate
(55).

Now, consider the function z2γZ ′
m (z) =

σm
c
z1/2+γJ−1/2−γ(

σmz

c
). Let us

rewrite this function in the form

z2γZ ′
m (z) = (σm/c)1/2−γξ1/2+γJ−1/2−γ (ξ) , (59)
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where ξ = σmz/c. The function ξ1/2+γJ−1/2−γ (ξ) is bounded at the point
ξ = 0 and continuous at ξ ∈ [0,+∞). Moreover, by virtue of the asymptotic
formula of the Bessel function:

Jν (ξ) ≈
(

2

πξ

)1/2

cos
(
ξ − νπ

2
− π

4

)
, (60)

for sufficiently large ξ, we have the estimate
∣∣ξ1/2+γJ−1/2−γ (ξ)

∣∣ < ξγ c̃6,
where c̃6 = const > 0 is valid. Considering these properties of the func-
tion ξ1/2+γJ−1/2−γ (ξ) , it follows from (60) that for sufficiently large ξ the

inequality
∣∣z2γZ ′

m (z)
∣∣ ≤ c̃6(σm/c)1/2−γξγ = c̃6(σm/c)1/2zγ ≤ c6(σm)1/2, i.e.,

the estimate (56) is valid.
It is known that the function Zm (z) satisfies equation from (9) at λm =

(σm/c)2. It follows that Bz
γ−1/2Zm (z) = −(σm/c)2Zm (z) . Then, by virtue of

evaluation (55), evaluation (57) is valid. Lemma 1 is proven. �

Lemma 2. [23] For sufficiently large m ∈ N , the following estimate is
valid ∣∣∣J3/2−γ (σm)

∣∣∣ ≥ c8(σm)−1/2, (61)

where c8 is the positive constant.

Lemma 3. Let the conditions of Theorem 2 be satisfied. Then, for the
coefficients fnm, defined by equality (47), the following estimate is valid:

|fnm| ≤ c9ω
−4
n (σm)−4,5, (62)

where c9 is some positive constants.

Proof. Let us represent the coefficient fnm in the form

fnm = dm

c∫
0

Fn (z) z
1/2+γJ1/2−γ (σmz/c) dz, (63)

where Fn (z) =
π/2∫
0

f (ϕ, z) sin
(
ωnϕ+ π

4

)
dϕ.

First, consider the function Fn (z) and for it applying the rule of integration
by parts four times, we obtain

Fn (z) = − 1

ωn
f (ϕ, z) cos (ωnϕ+ π/4)

∣∣∣∣
ϕ=π/2

ϕ=0

+
1

ω2
n

fϕ (ϕ, z) sin (ωnϕ+ π/4)

∣∣∣∣
ϕ=π/2

ϕ=0

+
1

ω3
n

fϕϕ (ϕ, z) cos (ωnϕ+ π/4)

∣∣∣∣
ϕ=π/2

ϕ=0
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− 1

ω4
n

fϕϕϕ (ϕ, z) sin (ωnϕ+ π/4)

∣∣∣∣
ϕ=π/2

ϕ=0

+
1

ω4
n

π/2∫
0

sin
(
ωnϕ+

π

4

) ∂4

∂ϕ4
f (ϕ, z) dϕ.

By virtue of the statements of Theorem 2, the non-integral terms in the
last term are zero. Hence,

Fn (z) =
1

ω4
n

π/2∫
0

sin
(
ωnϕ+

π

4

) ∂4

∂ϕ4
f (ϕ, z) dϕ. (64)

Based on the conditions of Theorem 2, it is true
∂4

∂ϕ4
f (ϕ, z) ∈ C

(
Π̄
)
.

Taking this into account and |sin (ωnϕ+ π/4)| ≤ 1, we conclude that the
integral in (64) exists and Fn (z) ∈ C [0, c] .

Now consider the coefficients fnm, defined by equality (63).
Using the equality

z1/2+γJ1/2−γ (σmz/c) = − c

σm

d

dz

[
z1/2+γJ−1/2−γ (σmz/c)

]
, (65)

coefficient fnm we will write in the form

fnm = −cdm
σm

c∫
0

d

dz

[
z1/2+γJ−1/2−γ (σmz/c)

]
Fn (z) dz.

Applying the rule of integration by parts, we obtain

fnm = −dm (c/σm) z1/2+γJ−1/2−γ (σmz/c)Fn (z)
∣∣∣z=c

z=0

+dm (c/σm)

c∫
0

z1/2+γJ−1/2−γ (σmz/c)F ′
n (z) dz. (66)

By virtue of the equality

z1/2+γJ−1/2−γ

(σmz

c

)
=

z2γc

σm

d

dz

[
z1/2−γJ1/2−γ (σmz/c)

]
, (67)

we rewrite equation (66) in the form

fnm = −dm (c/σm) z1/2+γJ−1/2−γ (σmz/c)Fn (z)
∣∣∣z=c

z=0

+dm(c/σm)2
c∫

0

d

dz

[
z1/2−γJ1/2−γ (σmz/c)

]
z2γF ′

n (z) dz.
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Hence, applying the rule of integration by parts again, we have

fnm = −dm (c/σm) z1/2+γJ−1/2−γ (σmz/c)Fn (z)
∣∣∣z=c

z=0

+dm (c/σm)2z1/2+γJ1/2−γ (σmz/c)F ′
n (z)

∣∣∣z=c

z=0

−dm(c/σm)2
c∫

0

z1/2−γJ1/2−γ (σmz/c)
(
z2γF ′

n (z)
)′
dz.

Taking into account the equalities
(
z2γF ′

n (z)
)′

= z2γBz
γ−1/2Fn (z) and (65),

let us rewrite the last equality in the form

fnm = −dm (c/σm) z1/2+γJ−1/2−γ (σmz/c)Fn (z)
∣∣∣z=c

z=0

+dm (c/σm)2z1/2+γJ1/2−γ (σmz/c)F ′
n (z)

∣∣∣z=c

z=0

+dm(c/σm)3
c∫

0

d

dz

[
z1/2+γJ−1/2−γ (σmz/c)

]
Bz

γ−1/2Fn (z) dz. (68)

Taking into account formulas (65) and (67), we apply the rule of integration
by parts three more times to the integral in (68). As a result, equality (68)
takes the form

fnm = dm

{
− (c/σm) z1/2+γJ−1/2−γ (σmz/c)Fn (z)

∣∣∣z=c

z=0

+ (c/σm)2z1/2+γJ1/2−γ (σmz/c)F ′
n (z)

∣∣∣z=c

z=0

+ (c/σm)3z1/2+γJ−1/2−γ (σmz/c)Bz
γ−1/2Fn (z)

∣∣∣z=c

z=0

− (c/σm)4z1/2+γJ1/2−γ (σmz/c)
d

dz
Bz

γ−1/2Fn (z)

∣∣∣∣
z=c

z=0

−(c/σm)5z1/2+γJ−1/2−γ (σmz/c)
[
Bz

γ−1/2

]2
Fn (z)

∣∣∣∣
z=c

z=0

+(c/σm)5
c∫

0

z1/2+γJ−1/2−γ (σmz/c)
d

dz

[
Bz

γ−1/2

]2
Fn (z) dz

}
. (69)

Since the integral in (64) converges uniformly with respect to z, all deriva-
tives and operators acting on z functions Fn (z), passes to functions f (ϕ, z).

By virtue of, z1/2+γJ−1/2−γ

(σmz

c

)
∈ C [0, c] , J1/2−γ (σm) = 0 and the condi-

tions of Theorem 2, the non-integral terms in (69) are zero. Hence,

fnm = dm(c/σm)5
c∫

0

z1/2+γJ−1/2−γ (σmz/c)
d

dz

[
Bz

γ−1/2

]2
Fn (z) dz.
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If we use equalities, z1/2+γJ−1/2−γ(σmz/c) =
c

σm
z2γZ ′

m (z) , then the last

equality can be written as

fnm = (σm/c)−6

c∫
0

z2γZ ′
m (z)

d

dz

[
Bz

γ−1/2

]2
Fn (z) dz. (70)

Using the operator decomposition Bz
γ−1/2, it is easy to see that

∂

∂z

[
Bz

γ−1/2

]2
f (ϕ, z)

=
∂5

∂z5
f (ϕ, z) +

4γ

z

∂4

∂z4
f (ϕ, z) +

4γ2 − 8γ

z2
∂3

∂z3
f (ϕ, z)

−12γ2 − 12γ

z3
∂2

∂z2
f (ϕ, z) +

12γ2 − 12γ

z4
∂

∂z
f (ϕ, z) .

Hence, based on the conditions of Theorem 2, it follows that

d

dz

[
Bz

γ−1/2

]2
f (ϕ, z) ∈ C

(
Π̄
)
.

Taking into account this and z2γZ ′
m (z) ∈ C [0, c] , we conclude that the

integral in (70) exists.

Substituting the function Fn (z) , defined by equality (64) into (70), we
have

fnm =
c6dm
ω4
nσ

6
m

c∫
0

π/2∫
0

sin
(
ωnϕ+

π

4

)
z2γZ ′

m (z)

× ∂

∂z

[
Bz

γ−1/2

]2
fϕϕϕϕ (ϕ, z) dϕdz. (71)

By virtue of the condition of Theorem 2, it is true that

∂

∂z

[
Bz

γ−1/2

]2
f (ϕ, z) ∈ C

(
Π̄
)
, fϕϕϕϕ (ϕ, z) ∈ C

(
Π̄
)
.

Then
∂

∂z

[
Bz

γ−1/2

]2
f (ϕ, z) ∈ C

(
Π̄
)
, fϕϕϕϕ (ϕ, z) ∈ C

(
Π̄
)
.

Taking this into account, and

sin
(
ωnϕ+

π

4

)
z1/2+γJ−1/2−γ

(σmz

c

)
∈ C

(
Π̄
)
,

we conclude that the integrand is continuous in Π̄, and the repeated integral
in (71) exists.

Based on the estimates (61), we obtain |dnm| ≤ c10σm, where c10 = const >
0. Given this and estimates (56), from (71), we obtain estimates (62). Lemma
3 is proved.
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Lemma 4. For any n,m ∈ N for functions ζnm (ρ), defined by equality
(48), it is valid to evaluate at ρ ∈ [0, 1] :

|ζnm (ρ)| ≤ c11ω
−4
n σ−4,5

m , (72)

and at ρ ∈ (0, 1)∣∣∣∣ζ ′′nm (ρ) +
1

ρ
ζ ′nm (ρ)

∣∣∣∣ ≤ c12
(
σ2
m + ω2

n/ρ
2
)
ω−4
n σ−4,5

m , (73)

where c11, c12 are positive constants.

Proof. It is easy to see that Iωn (σmρ/c) is an increasing function. By
virtue of ωn > 0 this function has zero at the point ρ = 0 and its maximum
is the point ρ = 1. If we take this into account, then from (48) by virtue of
(62), it follows the estimate (72).

Moreover, the function ζnm (ρ), defined by equality (48) satisfies the dif-
ferential equation (24) at μ̃ = μn. Therefore, the equality

ζ ′′nm (ρ) + (1/ρ) ζ ′nm (ρ) =
(
λm + μn/ρ

2
)
ζnm (ρ) , ρ ∈ (0, 1) . (74)

By virtue of evaluation (72), evaluation (73) follows from (74). Lemma 4 has
been proved.

Similarly, one can prove the following lemmas.

Lemma 5. For any n,m ∈ N functions Xnm (ξ), defined by equality (52),
estimates (72) and (73) are valid.

Lemma 6. For any n ∈ N for functions Sn (ϕ), defined by equality (37),
the estimates are valid

|Sn (ϕ)| ≤
√
2,

∣∣S′
n (ϕ)

∣∣ ≤ √
2ωnatϕ ∈ [0, π/2] , (75)

∣∣S′′
n (ϕ)

∣∣ ≤ √
2ω2

natϕ ∈ (0, π/2). (76)

The fairness of the estimates (75), (76) follows easily from the property of
trigonometric functions.

Lemma 7. For any n ∈ N for functions Yn (η), defined by the equality
(53), the estimates are valid

|Yn (η)| ≤ c13, η ≥ 1,
∣∣Y ′

n (η)
∣∣ ≤ c14ωn, η > 1, (77)

∣∣Y ′′
n (η)

∣∣ ≤ c15ω
2
n, η > 1, (78)

where c13, c14, c15 = const > 0.

Proof. By virtue of 0 < 1/η ≤ 1, the function Yn (η) is bounded. Using
the well-known formula [18]

d

dx
[xaF (a, b, c;x)] = axa−1F (a+ 1, b, c;x) , (79)
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from (53), we obtain

Y ′
n (η) = −ωn

2

(
1

η

)ωn/2+1

F

(
ωn

2
+ 1,

1 + ωn

2
, 1 + ωn;

1

η

)
. (80)

From this equality, by virtue of 0 < 1/η < 1 , the second estimate (77) follows.
Once again, using formula (79) from (80), we obtain

Y ′′
n (η) = ωn/2 (ωn/2 + 1) (1/η)ωn/2+2×

×F (ωn/2 + 2, (1 + ωn) /2, 1 + ωn; 1/η) .

From the last equality, by virtue of 0 < 1/η < 1, follows the estimate (78).
Lemma 7 has been proved.

Proof of Theorem 2. According to (50) and (51), all terms of series (54)
satisfy conditions (4)-(6). Then to prove the theorem it is enough to prove
the uniform convergence of series (54) and series, z2γVz, Vϕ in Ω̄0, as well as

series, Vρρ +
1

ρ
Vρ, B

z
γ−1/2V , Vϕϕ, Uξξ +

1

ξ
Uξ, Uη and Uηη in any compacta

K ⊂ Ω0 ∪Ω1.
According to [17], for sufficiently large m for m – one positive root of the

equation J1/2−γ (x) = 0, there is a relation

σm ≈ πm. (81)

For eigenvalues ωn, approximate equations are valid

ωn ≈ n. (82)

According to the estimates (55)-(57), (72), (73), (75), (76), (81) and (82),
the series (54), z2γVz, Vϕ and in the region Ω̄0 are estimated by the numerical
series, respectively

c16

∞∑
n=1

1

n4

∞∑
m=1

1

m4+γ
, c17

∞∑
n=1

1

n4

∞∑
m=1

1

m4
, c18

∞∑
n=1

1

n3

∞∑
m=1

1

m4+γ
, (83)

and the series, Vρρ +
1

ρ
Vρ, B

z
γ−1/2V and Vϕϕ are estimated respectively by

numerical series

c19

∞∑
n=1

1

n2

∞∑
m=1

1

m2+γ
, c20

∞∑
n=1

1

n4

∞∑
m=1

1

m2+γ
, c21

∞∑
n=1

1

n2

∞∑
m=1

1

m4+γ
, (84)

where cj, j = 16, 21 are the positive constants.
Since both multipliers of the number series in (83), (84) converge, the series

(54) and the series, z2γVz, Vϕ converge absolutely and uniformly to Ω̄0 and

the series, Vρρ +
1

ρ
Vρ, B

z
γ−1/2V and Vϕϕ converge on every compact K ⊂ Ω0.
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Now consider the series (54) in the region Ω̄1. Given ωn > 0 it follows that

2−ωn < c22, c22 = const > 0. (85)

According to estimates (55)-(57), (72), (73), (77), (78) and (85), the series
(54) and z2γUz in the region Ω̄1 are estimated in absolute value by the following
products of numerical series, respectively

c23

∞∑
n=1

n−4
∞∑

m=1

m−4−γ , c24

∞∑
n=1

n−4
∞∑

m=1

m−4 (86)

and the rows, Bz
γ−1/2U, Uξξ+

1

ξ
Uξ, Uη and Uηη are numerical rows, respectively

c25

∞∑
n=1

n−4
∞∑

m=1

m−2−γ , c26

∞∑
n=1

n−2
∞∑

m=1

m−2−γ , (87)

c27

∞∑
n=1

n−3
∞∑

m=1

m−4−γ , c28

∞∑
n=1

n−2
∞∑

m=1

m−4−γ , (88)

where cj, j = 23, 28 are positive constants. Both multipliers of the numerical
series in (86)-(88) converge, then the series (54) and z2γUz converge abso-
lutely and uniformly in to Ω̄1 and the series, Bz

γ−1/2U (x, y, z) , Uξξ (x, y, z) +

1

ξ
Uξ (x, y, z) , Uη (x, y, z) and Uηη (x, y, z) converge on every compacta of K ⊂

Ω1. Therefore, the function U (x, y, z) , defined by row (54), satisfies all the
conditions of the problem T. Theorem 2 is proved.

5. Conclusion

In this work, in a mixed domain, for which the elliptic part consists of
a quarter cylinder and the hyperbolic part of a triangular straight prism,
the Tricomi problem is studied for a mixed type equation with a singular
coefficient. The method of spectral analysis has been used to prove the unique
solvability of the problem posed. The solutions to the considered problem
in the areas of hyperbolicity and ellipticity of the equation are constructed
in the form of a double series. When justifying the uniform convergence of
the constructed series, asymptotic estimates of the Bessel functions of the
real and imaginary argument, as well as the properties of hypergeometric
Gauss functions, were used. On their basis, estimates were obtained for each
member of the series, which made it possible to prove the convergence of the
resulting series and its derivatives up to the second order inclusive, as well as
the existence theorem in the class of regular solutions.
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