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Abstract

In this paper, we establish the nonlocal controllability of mild solutions of
partial functional evolution equations with state-dependent delays in Fréchet
spaces. We give sufficient conditions to obtain the nonlocal controllability of
mild solutions by using Avramescu’s nonlinear alternative to for the sum of
compact and contraction operators in Fréchet spaces, combined with semi-
group theory.
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1. Introduction

We demonstrate in this paper the controllability of mild solutions defined
on the semi-infinite real interval J := [0,+∞), for a class of first order semi-
linear functional differential evolution equations with infinite state-dependent
delay and with nonlocal conditions in a real Banach space (E, |·|). In Section 3,
we consider the following nonlocal semilinear functional differential evolution
equation

y′(t)−A(t)y(t) = Cu(t) + f(t, yρ(t,yt)), a.e. t ∈ J, (1)

y(t) = φ(t)− ht(y), t ∈ (−∞, 0], (2)
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where B is an abstract phase space which will be defined later; φ ∈ B, f :
J × B → E, ρ : J × B → R and ht : B → E are given functions; the control
function u(·) is given in L2(J,E) is the Banach space of admissible control
function; C is a bounded linear operator from E into E and {A(t)}t∈J is a
family of linear closed (not necessarily bounded) operators from E into E
which generates an evolution system of operators {U(t, s)}(t,s)∈J×J for s ≤ t.
For any continuous function y and any t ∈ J , we denote by yt the element of B
defined by yt(θ) = y(t+ θ), for θ ≤ 0. Here yt(·) represents the history of the
state from time t ≤ 0 up to the present time t. We assume that the histories
yt belong to B. Then in Section 4, we illustrate by an example the previous
abstract theory obtained.

Functional and partial functional differential equations have been used to
model the evolution of physical, biological and economic systems, where the
response of the system depends not only on the current state but also on
the system’s past. In recent decades, many authors have extensively stud-
ied the existence and uniqueness of mild, strong and classical solutions to
semilinear functional differential equations using semigroup theory, fixed point
arguments, degree theory and non compactness measures. For example, we
mentioned the books of Ahmed [4], Pazy [26] and Wu [28]. When the delay
is infinite, the concept of the phase space B plays an important role in the
study of both qualitative and quantitative theory. A common choice is a semi-
norm space satisfying the appropriate axioms, which is introduced by Hale
and Kato in [21]. The problem of controllability of linear and nonlinear sys-
tems represented by ODEs in finite-dimensional spaces has been extensively
studied. Some authors have extended the concept of controllability to infinite-
dimensional systems with unbounded operators in Banach spaces. Quinn and
Carmichael [27] showed that controllability problems can be transformed into
fixed point problems. Using fixed-point parameters, Benchohra et al. ex-
amined many classes of functional differential equations and inclusions and
presented some controllability results in [7]. Baghli et al. considered the ex-
istence, uniqueness, and controllability of mild solutions to various evolution
problems with finite and infinite delay in [2], [10]-[15]. However, in recent
years, complex cases where the delay depends on an unknown function have
been proposed in modeling. These equations are often referred to as state
delay equations. We refer readers to the work of Abada et al. [1] and Baghli
et al. in [5, 6, 9, 16]. More recently, Baghli and Mebarki provided results for
the existence of mild solutions to the class of neutral-type integral-differential
evolution inclusions constraints with infinite state-dependent delay in [25].
Byszewski introduced the concept of nonlocal constraints in [18, 19] to ex-
tend classical constraint-based problems. Nonlocal constraints represent their
usefulness in describing certain physical phenomena. Nonlocal constraints are
implemented in physics due to their better efficiency compared to classical
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initial constraints. Furthermore, due to the accuracy of non-local constraints,
they are largely involved in boundary value problems. In recent years, several
papers have been devoted to the existence of solutions to differential equations
with nonlocal conditions as in [17, 24].

Our aim in this paper is to extend Baghli et al. controllability results
obtained specially in [5] earlier for our nonlocal problem (1)−(2). We use
Avramescu’s nonlinear alternative method [8] for the sum of compact operators
and contraction maps in Fréchet spaces, combined with semigroup theory [4,
26], to provide sufficient conditions for the existence of mildly controllable
solutions.

2. Preliminaries

In this section, we introduce notations, definitions and theorems which are
used throughout this paper.

Let C(J,E) be the continuous functions space from J into E and B(E)
be the all bounded linear operators space from E into E, with the norm:
‖N‖B(E) = sup{|N(y)| : |y| = 1}.

A measurable function y : J → E is Bochner integrable if and only if
|y| is Lebesgue integrable. Let L1(J,E) be the Banach space of measurable
functions y : J → E which are Bochner integrable normed by: ‖y‖L1 =∫ +∞
0 |y(t)|dt.

Let X be a Fréchet space with a semi-norms family {‖·‖n}n∈N.We assume
that the semi-norms family {‖ · ‖n} verifies:

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ · · · for every x ∈ X.

In what follows, we assume that {A(t)}t≥0 is a closed densely defined linear
unbounded operators family on the Banach space E and with domain D(A(t))
independent of t.

Definition 2.1. A family {U(t, s)}(t,s)∈J×J of bounded linear operators
U(t, s) : J × J → E for s ≤ t is called an evolution system if the following
properties are satisfied:

(1) U(t, t) = I where I is the identity operator in E,
(2) U(t, s)U(s, τ) = U(t, τ) for τ ≤ s ≤ t,
(3) U(t, s) ∈ B(E), where for every s ≤ t and for each y ∈ E, the mapping

(t, s) → U(t, s)y is continuous.

In this paper we use the axiomatic definition of the phase space B intro-
duced by Hale and Kato in [21] and follow the terminology used by Hino,
Murakami and Naito in [23]. Thus, B will be a linear space of functions
mapping (−∞, 0] into E endowed with a seminorm ‖ · ‖B, and satisfying the
following axioms:
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(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then for
every t ∈ [0, b) the following conditions hold:
(i) yt ∈ B;
(ii) There exists a positive constant D such that

|y(t)| ≤ D‖yt‖B;
(iii) There exist two functions K(·), M(·) : R+ → R

+ independent of
y(t) with K continuous and M locally bounded such that:

‖yt‖B ≤ K(t) sup
0≤s≤t

|y(s)|+M(t)‖y0‖B.

Denote Kb = sup
t∈[0,b]

K(t) and Mb = sup
t∈[0,b]

M(t).

(A2) For the function y(·) in (A1), yt is a B-valued continuous function on
[0, b].

(A3) The space B is complete.

Remark 2.1.

1. (ii) is equivalent to |φ(0)| ≤ D‖φ‖B for every φ ∈ B.
2. Since ‖·‖B is a seminorm, two elements φ,ψ ∈ B can check ‖φ−ψ‖B = 0

without necessarily φ(θ) = ψ(θ) for all θ ≤ 0.
3. From equivalence, we can see that for all φ,ψ ∈ B such that ‖φ−ψ‖B =

0. This implies necessarily that φ(0) = ψ(0).

Here is an example of phase spaces. For more details we refer the reader
to the book by Hino et al. [23].

Example 2.1. Let BC denote the bounded continuous functions space
defined from R

− to E; BUC denote the bounded uniformly continuous func-
tions space defined from R

− to E;
C∞ := {φ ∈ BC : limθ→−∞ φ(θ) exist in E} ;
C0 := {φ ∈ BC : limθ→−∞ φ(θ) = 0} , endowed with the uniform norm ‖φ‖ =
sup
θ≤0

|φ(θ)|. Then, we have that the spaces BUC, C∞ and C0 satisfies assump-

tions (A1) − (A3). However, BC satisfy axioms (A1), (A3) not axiom (A2).
�

Set R(ρ−) = {ρ(s,Φ) : (s,Φ) ∈ J × B, ρ(s,Φ) ≤ 0}. We always assume
that ρ : J × B → R is continuous. Additionally, we introduce the following
hypothesis:b

(HΦ) The function t→ Φt is continuous from R(ρ−) into B and for every
t ∈ R(ρ−), there exists a continuous and bounded function LΦ : R(ρ−) →
(0,+∞) such that ‖Φt‖B ≤ LΦ(t)‖Φ‖B.
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Remark 2.2. Continuous and bounded functions verified frequently the
condition (HΦ) (see [23]).

Lemma 2.1. [22] If y : (−∞, b] → E is a function such that y0 = Φ ∈ B,
then for each s ∈ R(ρ−) ∪ J

‖ys‖B ≤ (Mb + LΦ)‖Φ‖B +Kb sup {|y(θ)|; θ ∈ [0,max{0, s}]} ,
where LΦ = sup

t∈R(ρ−)

LΦ(t).

Proposition 2.1. [5] From (HΦ), (A1) and Lemma 2.1, for all t ∈ [0, n]
and n ∈ N we have

‖yρ(t,yt)‖B ≤ Kn|y(t)|+
(
Mn + LΦ

) ‖Φ‖B.
Definition 2.2. A function f : J × B → E is said to be an L1

loc-
Carathéodory function if it satisfies:

(i) for each t ∈ J the function f(t, ·) : B → E is continuous;
(ii) for each y ∈ B the function f(·, y) : J → E is measurable;
(iii) for every positive integer q there exists ϑq ∈ L1

loc(J,R
+) such that

|f(t, y)| ≤ ϑq(t) for all ‖y‖B ≤ q and a.e. t ∈ J.

Definition 2.3. A function f : X → X is said to be a contraction if for
each n ∈ N there exists kn ∈ (0, 1) such that:

‖f(x)− f(y)‖n ≤ kn‖x− y‖n for all x, y ∈ X.

Now we introduce the nonlinear alternative used in this paper given by
Avramescu in Fréchet spaces which is an extension of the Burton and Kirk
alternative given in Banach spaces, we refer to [8] and the references therein.

Theorem 2.1. (Nonlinear Alternative of Avramescu)

LetX be a Fréchet space and let A,B : X → X be two operators satisfying:
A is a compact operator and B is a contraction. Then either one of the
following statements holds:

(C1) The operator A+B has a fixed point;
(C2) The set

{
x ∈ X, x = λA(x) + λB

(
x
λ

)}
is unbounded for some λ ∈

(0, 1).

3. Semilinear Evolution Equations

In this section, we give a nonlocal controllability results for the problem
(1)−(2). Before stating and proving this result, we introduce the definition of
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mild solutions for the nonlocal problem (1)−(2) and we define its controllabil-
ity sense.

Definition 3.1. We say that the function y(·) : R → E is a mild solution
of (1)−(2) if y(t) = φ(t)−ht(y) for all t ∈ (−∞, 0] and y satisfies the following
integral equation

y(t) = U(t, 0)[φ(0) − h0(y)] +

∫ t

0
U(t, s)Cu(s)ds

+

∫ t

0
U(t, s)f(s, yρ(s,ys))ds for each t ∈ J. (3)

Definition 3.2. The evolution problem (1)−(2) is said to be non locally
controllable if for every initial function φ ∈ B, y� ∈ E and n ∈ N, there is some
control u ∈ L2([0, n], E) such that the mild solution y(·) of (1)−(2) satisfies
the terminal condition

y(n) + hn(y) = y�. (4)

We will need to introduce the following hypotheses which are assumed
thereafter:

(H1) U(t, s) is compact for t−s > 0 and there exists a constant M̂ ≥ 1 such

that ‖U(t, s)‖B(E) ≤ M̂ for every s ≤ t.

(H2) There exists a function p ∈ L1
loc(J,R

+) and a continuous nondecreasing
function ψ : R+ → (0,+∞) and such that:

|f(t, u)| ≤ p(t)ψ (‖u‖B) for a.e. t ∈ J and each u ∈ B.
(H3) For all R > 0, there exists lR ∈ L1

loc(J,R
+) such that:

|f(t, u)− f(t, v)| ≤ lR(t)‖u− v‖B
for all u, v ∈ B with ‖u‖B ≤ R and ‖v‖B ≤ R.

(H4) For each n ∈ N, the linear operatorW : L2([0, n], E) → E is defined by

Wu =
∫ n
0 U(n, s)Cu(s)ds, has a pseudo invertible operator W̃−1 which

takes values in L2([0, n], E)/ kerW and there exists positive constants

M̃ and M̃1 such that: ‖C‖B(E) ≤ M̃ and ‖W̃−1‖ ≤ M̃1.
(H5) For each n ∈ N, there exists a constant σn > 0 such that

|ht(u)− ht(v)| ≤ σn‖u− v‖B
for all u, v ∈ B with ‖u‖B ≤ n and ‖v‖B ≤ n.

(H6) There exists σ̂n > 0 such that |ht(u)| ≤ σ̂n for each t ∈ J and u ∈ B
with ‖u‖B ≤ n.
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Remark 3.1. For the construction of W̃−1, see the paper of Quinn and
Carmichael [27].

Corollary 3.1. From (HΦ) and Proposition 2.1, the function y : (−∞, b] →
E such that y(t) = φ(t)− ht(y) for t ≤ 0 when ht is satisfying (H6), then for
each t ∈ [0, n] and n ∈ N we have

‖yρ(t,yt)‖B ≤ Kn|y(t)|+
(
Mn + Lφ

h

)
(‖φ‖B + σ̂n),

for ρ ∈ R(ρ−), and Lφ
h = sup

t∈R(ρ−)

Lφ(t)−ht(·).

Consider the following space

B+∞ = {y : R → E : y|[0,T ] continuous for T > 0 and y0 ∈ B},

where y|[0,T ] is the restriction of y to the real compact interval [0, T ].

Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms by:

‖y‖n := sup
t∈[0,n]

e−τL∗
n(t)|y(t)| where L∗

n(t) =
∫ t
0 l̄n(s)ds , l̄n(t) = KnM̂ln(t) and

ln is the function from (H3). Then B+∞ is a Fréchet space with those family
of semi-norms {‖ · ‖n}n∈N.

Theorem 3.1. Assume that (HΦ) and (H1)-(H6) hold. Then the partial
functional evolution equation with infinite state-dependant delay (1)−(2) is
non locally controllable on R.

P r o o f. We transform the problem (1)−(2) into a fixed-point problem.
For that, let us consider the operator N : B+∞ → B+∞ defined by

N(y)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(t)− ht(y), if t ≤ 0;

U(t, 0)[φ(0) − h0(y)] +

∫ t

0
U(t, s)Cuy(s)ds

+

∫ t

0
U(t, s)f(s, yρ(s,ys))ds, if t ∈ J.

�

First, let us introduce the following proposition.
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Proposition 3.1. From the inequalities (3) and (4) and the hypotheses
(H1), (H2), (H4) and (H6), for all t ∈ [0, n] and n ∈ N we have

|uy(t)| ≤ M̃1

[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

+ M̂

∫ n

0
p(τ)ψ(‖yρ(τ,yτ )‖B)dτ

]
. (5)

P r o o f. Using assumption (H4), for arbitrary function y(·), we define
the control

uy(t) = W̃−1

[
y� − hn(y)− U(n, 0) [φ(0) − h0(y)]

−
∫ n

0
U(n, s)f(s, yρ(s,ys))ds

]
(t).

By the hypotheses (H1), (H6) and using Remark 2.1, we get

|uy(t)| ≤ ‖W̃−1‖
[
|y�|+ |hn(y)|+ ‖U(t, 0)‖B(E)

[|φ(0)| + |h0(y)|
]

+

∫ n

0
‖U(n, τ)‖B(E)|f(τ, yρ(τ,yτ ))|dτ

]
≤ M̃1

[
|y�|+ σ̂n + M̂ [D‖φ‖B + σ̂n] + M̂

∫ n

0
|f(τ, yρ(τ,yτ ))|dτ

]
.

Applying (H2), we get

|uy(t)| ≤ M̃1

[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

+ M̂

∫ n

0
p(τ)ψ(‖yρ(τ,yτ )‖B)dτ

]
.

�

Using the previous proposition, we shall show that the operator N has a
fixed point y(·) which is the mild solution of the nonlocal evolution equation
(1)−(2).

P r o o f. For φ ∈ B, we define the function x(·) : R → E by

x(t) =

{
φ(t)− ht(y), if t ≤ 0;

U(t, 0)[φ(0) − h0(y)], if t ∈ J.
Then x0 = φ − h0(y). For each function z ∈ B+∞ with z(0) = 0, we denote
by z̄ the function defined by

z̄(t) =

{
0, if t ≤ 0;

z(t), if t ∈ J.
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If y(·) satisfies (3), we can decompose it as y(t) = z(t) + x(t) for t ∈ J ,
which implies yt = zt + xt, for every t ∈ J . The function z(·) satisfies z0 = 0
and for t ∈ J , we get

z(t) =

∫ t

0
U(t, s)Cuz+x(s)ds

+

∫ t

0
U(t, s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Let B0
+∞ = {z ∈ B+∞ : z0 = 0}. We define for t ∈ J the operators

F, G : B0
+∞ → B0

+∞ by F (z)(t) =
∫ t
0 U(t, s)Cuz+x(s)ds and G(z)(t) =∫ t

0 U(t, s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Clearly the operator N has a fixed point is equivalent to F +G has one,
so it turns to prove that F +G has a fixed point. The proof will be given in
several steps.

Step 1: F is continuous. Let (zk)k∈N be a sequence in B0
+∞ such that

zk → z in B0
+∞. By the hypotheses (H1) and (H4), we get for every t ∈ [0, n]

|F (zk)(t) − F (z)(t)|

≤
∫ t

0
‖U(t, s)‖B(E)‖C‖B(E)|uzk+x(s)− uz+x(s)|ds

≤ M̂M̃

∫ t

0
|uzk+x(s)− uz+x(s)|ds.

Using the hypotheses (H1), (H4), (H5) and assumption (A1), we get

|uzk+x(s)− uz+x(s)| ≤ ‖W̃−1‖
[
|hn(zk + x)− hn(z + x)|

+ ‖U(s, 0)‖B(E)|h0(zk + x)− h0(z + x)|

+

∫ n

0
‖U(n, τ)‖B(E)|f(τ, zkρ(τ,zkτ+xτ ) + xρ(τ,zkτ+xτ ))

− f(τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ ))|dτ
]

≤ M̃1

[
σn(M̂ + 1)Kn|zk(s)− z(s)|

+ M̂

∫ n

0
|f(τ, zkρ(τ,zkτ+xτ ) + xρ(τ,zkτ+xτ ))

− f(τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ ))|dτ
]
.
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Then

|F (zk)(t)− F (z)(t)| ≤ M̂M̃M̃1

∫ t

0
σn(M̂ + 1)Kn|zk(s)− z(s)|ds

+ M̂2M̃M̃1

∫ t

0

∫ n

0
|f(τ, zkρ(τ,zkτ+xτ ) + xρ(τ,zkτ+xτ ))

− f(τ, zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ ))|dτds

≤ σnKnM̂M̃M̃1(M̂ + 1)

∫ t

0
|zk(s)− z(s)|ds

+ M̂2M̃M̃1n

∫ n

0
|f(s, zkρ(s,zks+xs) + xρ(s,zks+xs))

− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds.
Since f is Caratheodory, by the Lebesgue dominated convergence theorem,

we obtain |F (zk)(t)− F (z)(t)| → 0 as k → +∞. Thus F is continuous.

Step 2: F maps bounded sets of B0
+∞ into bounded sets. Indeed, it is

enough to show that for any d > 0, there exists a positive constant 
 such
that for each z ∈ Bd Bd = {z ∈ B0

+∞ : ‖z‖n ≤ d} one has ‖F (z)‖n ≤ 
. Let
z ∈ Bd. By the hypotheses (H1), (H4) and the inequality (5), we have for
each t ∈ [0, n]

|F (z)(t)| ≤
∫ t

0
‖U(t, s)‖B(E)‖C‖B(E)|uz+x(s)|ds

≤ M̂M̃

∫ t

0
M̃1

[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

+M̂

∫ n

0
p(τ)ψ(‖zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )‖B)dτ

]
ds

≤ M̂M̃M̃1n
[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
+ M̂2M̃M̃1n

∫ n

0
p(s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B)ds.

Using Corollary 3.1 and the fact that x0 = φ− h0(z + x), we get

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ ‖zρ(s,zs+xs)‖B + ‖xρ(s,zs+xs)‖B
≤ Kn|z(s)| + (Mn + Lφ

h)‖z0‖B +Kn|x(s)|+ (Mn + Lφ
h)‖x0‖B

≤ Kn|z(s)| +Kn‖U(s, 0)‖B(E)|φ(0)| +Kn‖U(s, 0)‖B(E)|h0(z + x)|
+ (Mn + Lφ

h) (‖φ‖B + σ̂n)

≤ Kn|z(s)| +KnM̂ (D‖φ‖B + σ̂n) + (Mn + Lφ
h) (‖φ‖B + σ̂n)

≤ Kn|z(s)| + (KnM̂D +Mn + Lφ
h)‖φ‖B + (KnM̂ +Mn + Lφ

h)σ̂n.
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Set cn := (KnM̂D +Mn + Lφ
h)‖φ‖B + (KnM̂ +Mn + Lφ

h)σ̂n to get

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ Kn|z(s)|+ cn. (6)

Since z ∈ Bd, then we have

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ Knd+ cn := δn. (7)

We get, using the nondecreasing character of ψ, for each t ∈ [0, n]

|F (z)(t)| ≤ M̂M̃M̃1n
[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
+ M̂2M̃M̃1n

∫ n

0
p(s)ψ (Kn|z(s)|+ cn) ds

≤ M̂M̃M̃1n
[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
+ M̂2M̃M̃1nψ(δn)‖p‖L1 := 
n.

Thus there exists a positive number 
n such that ‖F (z)‖n ≤ 
n. Hence
F (Bd) ⊂ B�n .

Step 3: F maps bounded sets into equicontinuous sets of B0
+∞. We con-

sider Bd as in Step 2 and we show that F (Bd) is equicontinuous. Let τ1, τ2 ∈ J
with τ2 > τ1 and z ∈ Bd. Then

|F (z)(τ2)− F (z)(τ1)| ≤
∫ τ1

0

∣∣∣[U(τ2, s)− U(τ1, s)]Cuz+x(s)
∣∣∣ds

+

∫ τ2

τ1

|U(τ2, s)Cuz+x(s)| ds

≤
∫ τ1

0
‖U(τ2, s)− U(τ1, s)‖B(E)‖C‖B(E)|uz+x(s)|ds

+

∫ τ2

τ1

‖U(τ2, s)‖B(E)‖C‖B(E)|uz+x(s)|ds.

By the inequalities (5) and (7) and using the nondecreasing character of
ψ, we get

|uz+x(t)| ≤ M̃1

[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

+ M̂ψ(δn)‖p‖L1

]
:= ωn. (8)

Then

|F (z)(τ2)− F (z)(τ1)| ≤ M̃ωn

∫ τ1

0
‖U(τ2, s)− U(τ1, s)‖B(E)ds

+ M̃ωn

∫ τ2

τ1

‖U(τ2, s)‖B(E)ds.

Noting that |F (z)(τ2)−F (z)(τ1)| tends to zero as τ2−τ1 → 0 independently
of z ∈ Bd. The right-hand side of the above inequality tends to zero as
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τ2 − τ1 → 0. Since U(t, s) is a strongly continuous and compact operator
for t > s this is implies the continuity in the uniform operator topology (see
[3, 26]). As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli
theorem it suffices to show that the operator F maps Bd into a precompact
set in E.

Let t ∈ J be fixed and let ε be a real number satisfying 0 < ε < t. For
z ∈ Bd we define

Fε(z)(t) =

∫ t−ε

0
U(t, s)Cuz+x(s)ds

= U(t, t− ε)

∫ t−ε

0
U(t− ε, s)Cuz+x(s)ds.

Note that the set

{∫ t−ε

0
U(t− ε, s)Cuz+x(s)ds : z ∈ Bd

}
is bounded. Since

U(t, s) is a compact operator, Zε(t) = {Fε(z)(t) : z ∈ Bd} is a precompact set
in E for every ε sufficiently small, 0 < ε < t. Moreover using (8), we have

|F (z)(t) − Fε(z)(t)| ≤
∫ t

t−ε
‖U(t, s)‖B(E)‖C‖B(E)|uz+x(s)|ds

≤ M̃ωn

∫ t

t−ε
‖U(t, s)‖B(E)ds.

Then |F (z)(t)−Fε(z)(t)| → 0 as ε → 0. Therefore there are arbitrary closed
pre-compact sets to the set {F (z)(t) : z ∈ Bd}. Hence the set {F (z)(t) : z ∈
Bd} is precompact in E. So we deduce from Steps 1, 2 and 3 that F is a
continuous compact operator.

Step 4: G is a contraction. Indeed, consider z, z ∈ B0
+∞. By (H1) and

(H3) for each t ∈ [0, n] and n ∈ N

|G(z)(t) −G(z)(t)| ≤
∫ t

0
‖U(t, s)‖B(E)

× ∣∣f(s, zρ(s,zs+xs) + xρ(s,zs+xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))
∣∣ ds

≤
∫ t

0
M̂ln(s)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B ds.
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Using inequality (6), we obtain

|G(z)(t) −G(z)(t)| ≤
∫ t

0
M̂Knln(s)|z(s)− z(s)|ds

≤
∫ t

0

[
ln(s)e

τL∗
n(s)

]
e−τL∗

n(s)|z(s)− z(s)|ds

≤
∫ t

0

[
eτL

∗
n(s)

τ

]′
ds‖z − z‖n

≤ 1

τ
eτL

∗
n(t)‖z − z‖n.

Therefore, ‖G(z)−G(z)‖n ≤ 1
τ ‖z−z‖n. So, the operator G is a contraction

for all n ∈ N.

Step 5: To apply Theorem 2.1, we must check (C2): i.e. it remains to
show that the following set is bounded

Γ =
{
z ∈ B0

+∞ : z = λF (z) + λG
( z
λ

)
for some 0 < λ < 1

}
.

Let z ∈ Γ . By (H1), (H2), (H4) and the inequality (5), we have for each
t ∈ [0, n]

|z(t)| ≤ λ

∫ t

0
‖U(t, s)‖B(E)‖C‖B(E)|uz+x(s)|ds

+ λ

∫ t

0
‖U(t, s)‖B(E)

∣∣∣∣f (s, zρ(s, zsλ +xs)

λ
+ xρ(s, zs

λ
+xs)

)∣∣∣∣ ds
≤ λM̂M̃

∫ t

0
M̃1

[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

+M̂

∫ n

0
p(τ)ψ(‖zρ(τ,zτ+xτ ) + xρ(τ,zτ+xτ )‖B)dτ

]
ds

+ λM̂

∫ t

0
p(s)ψ

(∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zs

λ
+xs)

∥∥∥∥
B

)
ds

≤ λM̂M̃M̃1n
[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
+ λM̂2M̃M̃1n

∫ n

0
p(s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B)ds

+ λM̂

∫ t

0
p(s)ψ

(∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zs

λ
+xs)

∥∥∥∥
B

)
ds.
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Using Corollary 3.1 and inequality (6), we obtain∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zs

λ
+xs)

∥∥∥∥
B
≤ 1

λ
‖zρ(s, zs

λ
+xs)‖B + ‖xρ(s, zs

λ
+xs)‖B

≤ Kn|z(s)|
λ

+ (Mn + Lφ
h)‖z0‖B +Kn|x(s)|+ (Mn + Lφ

h)‖x0‖B

≤ Kn|z(s)|
λ

+Kn‖U(s, 0)‖B(E)|φ(0)| +Kn‖U(s, 0)‖B(E)|h0(z + x)|
+ (Mn + Lφ

h) (‖φ‖B + σ̂n)

≤ Kn|z(s)|
λ

+ (KnM̂D +Mn + Lφ
h)‖φ‖B + (KnM̂ +Mn + Lφ

h)σ̂n.

Then, we get∥∥∥∥zρ(s, zsλ +xs)

λ
+ xρ(s, zs

λ
+xs)

∥∥∥∥
B
≤ Kn|z(s)|

λ
+ cn. (9)

By inequality (6) and the previous one and the nondecreasing character of ψ,
we obtain

|z(t)| ≤ λM̂M̃M̃1n
[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
+ λM̂2M̃M̃1n

∫ n

0
p(s)ψ (Kn|z(s)| + cn) ds

+ λM̂

∫ t

0
p(s)ψ

(
Kn|z(s)|

λ
+ cn

)
ds.

Consider the function ũ(t) := sup
θ∈[0,t]

|z(θ)|. Then by the nondecreasing

character of ψ, we get for t ∈ [0, n]

Knũ(t)

λ
+ cn ≤ cn +KnM̂M̃M̃1n

[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
+KnM̂

2M̃M̃1n

∫ n

0
p(s)ψ(Knũ(s) + cn)ds

+KnM̂

∫ t

0
p(s)ψ

(
Knũ(s)

λ
+ cn

)
ds.

Set αn := cn +KnM̂M̃M̃1n
[
|y�|+ M̂D‖φ‖B + (M̂ + 1)σ̂n

]
.

By the nondecreasing character of ψ and for λ < 1, we obtain

Knũ(t)

λ
+ cn ≤ αn +KnM̂

2M̃M̃1n

∫ n

0
p(s)ψ

(
Knũ(s)

λ
+ cn

)
ds

+KnM̂

∫ t

0
p(s)ψ

(
Knũ(s)

λ
+ cn

)
ds.
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We consider the function μ defined by

μ(t) := sup

{
Knũ(s)

λ
+ cn : 0 ≤ s ≤ t

}
, t ∈ J.

Let t� ∈ [0, t] be such that μ(t) = Knũ(t�)
λ + cn. If t� ∈ [0, n], by the

previous inequality, we have for t ∈ [0, n]

μ(t) ≤ αn +KnM̂
2M̃M̃1n

∫ n

0
p(s)ψ(μ(s))ds

+KnM̂

∫ t

0
p(s)ψ(μ(s))ds

≤ αn +KnM̂(M̂M̃M̃1n+ 1)

∫ n

0
p(s)ψ(μ(s))ds.

Consequently,

‖z‖n
αn +KnM̂(M̂M̃M̃1n+ 1)ψ(‖z‖n)‖p‖L1

≤ 1.

Then this shows that the set Γ is bounded, i.e. the statement (C2) in
Theorem 2.1 does not hold. Then the Avramescu nonlinear alternative [8]
implies that (C1) holds: i.e. the operator F +G has a fixed-point z�. Then,
there exists at least y�(t) = z�(t) + x(t), t ∈ R which is a fixed point of the
operator N , which is a mild solution of the nonlocal problem (1)−(2). Thus
the evolution system (1)−(2) is non locally controllable on R. �

4. Example

We give in this section an example to illustrate the previous results. Con-
sider the following control problem given by the partial functional differential
equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
(t, ξ) =

∂2v

∂ξ2
(t, ξ) + a0(t, ξ)v(t, ξ) + d(ξ)u(t)

+

∫ 0

−∞
a1(s− t)v

[
s− ρ1(t)ρ2

(∫ π

0
a2(η)|v(t, η)|2dη

)
, ξ

]
ds,

t ≥ 0, ξ ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ≥ 0,

v(θ, ξ) +

p∑
i=1

civ(θ + ti, ξ) = v0(θ, ξ), θ ≤ 0, ξ ∈ [0, π],

(10)

where a0 : R
+ × [0, π] → R is a given function such that a0(·, ξ) is continuous

and a0(t, ·) is uniformly Hölder continuous in t (see [20]); a1 : R− → R; ρ1 :
R
+ → R ; ρ2 : R → R ; a2 : [0, π] → R and v0 : R

−× [0, π] → R are continuous
functions. ci, i = 1, · · · , p, are given constants and 0 < t1 < · · · < tp < +∞.
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Let E = L2([0, π],R), u(·) : R+ → E is a given control and d : [0, π] → E
is a continuous function. Consider the operator A : D(A) ⊂ E → E given by
Aw = w′′ with domain

D(A) := {w ∈ E : w′′ ∈ E,w(0) = w(π) = 0}.
Thus A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0

on E. Furthermore, A has discrete spectrum with eigenvalues −n2, n ∈ N,

and corresponding normalized eigenfunctions given by zn(ξ) =
√

2
π sin(nξ). In

addition, {zn : n ∈ N} is an orthonormal basis of E and

T (t)x =
∞∑
n=1

e−n2t(x, zn)zn x ∈ E, t ≥ 0.

It follows from this representation that T (t) is compact for every t > 0
and that ‖T (t)‖ ≤ e−t for every t ≥ 0. On the domain D(A), we define the
operator A(t) : D(A) ⊂ E → E by

A(t)x(ξ) = Ax(ξ) + a0(t, ξ)x(ξ).

By assuming that a0(·) is continuous and that a0(t, ξ) ≤ −δ0 (δ0 > 0)
for every t ∈ R, ξ ∈ [0, π], it follows that the system u′(t) = A(t)u(t) t ≥
s, u(s) = x ∈ E, has an associated evolution family given by

U(t, s)x(ξ) =

[
T (t− s) exp

(∫ t

s
a0(τ, ξ)dτ

)
x

]
(ξ).

From this expression, it follows that U(t, s) is a compact linear operator

and that ‖U(t, s)‖ ≤ e−(1+δ0)(t−s) for every s ≤ t.

Set B = BUC(R−, E) the space of bounded uniformly continuous functions
defined from R

− to E endowed with the uniform norm ‖φ‖ = sup
θ∈R−

|φ(θ)|.

Theorem 4.1. Let φ ∈ B. Assume that condition (HΦ) holds and the
functions d : [0, π] → E, ρ1 : R+ → R, ρ2 : R → R, a1 : R− → R, a2 : [0, π] →
R and v0 : R

− × [0, π] → R are continuous. Then the partial differential
equation (10) is non locally controllable on R.

P r o o f. From the assumptions, we have the following well defined func-
tions for each ξ ∈ [0, π]:

for t ∈ R : y(t)(ξ) = v(t, ξ);

for t ≥ 0 : f(t, ψ)(ξ) =
∫ 0
−∞ a1(s)ψ(s, ξ)ds, Cu(t)(ξ) = d(ξ)u(t),

for u ∈ R, d(ξ) ∈ E, and for C ∈ B(R, E);
for t ≤ 0 : ρ(t, ψ)(ξ) = t− ρ1(t)ρ2

(∫ π
0 a2(η)|ψ(0, ξ)|2dη

)
,

ht(v)(ξ) =
∑p

j=1 cjv(t+ tj, ξ), and φ(t)(ξ) = v0(t, ξ)
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which permit to transform system (10) into the abstract system (1)−(2).
Moreover, the function f is bounded linear operator. Then, the nonlocal
controllability of mild solutions can be deduced from a direct application of
Theorem 3.1 and the conclusion of our theorem hold. �

From Remark 2.2, we have the following result.

Corollary 4.1. Let φ ∈ B be continuous and bounded. Then the system
(10) is non locally controllable on R.
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