DOI: 10.12732/ijam.v37i1.6
NONLOCAL CONTROLLABILITY OF MILD SOLUTIONS
FOR EVOLUTION EQUATIONS WITH STATE-DEPENDENT
DELAY IN FRECHET SPACES
Chahrazed Boudefla 1, Selma
Baghli-Bendimerad 2,§
P.O. Box 89, Laboratory of Mathematics
Djillali Liabes University
Sidi Bel-Abbes - 22000, ALGERIA
Abstract. In this paper, we establish the nonlocal controllability of mild solutions of partial functional evolution equations with state-dependent delays in Frechet spaces. We give sufficient conditions to obtain the nonlocal controllability of mild solutions by using Avramescu’s nonlinear alternative to for the sum of compact and contraction operators in Frechet spaces, combined with semigroup theory.
How
to cite this paper?
DOI: 10.12732/ijam.v37i1.6
Source: International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2024
Volume: 37
Issue: 1
References
[1] N. Abada, R.P. Agarwal, M. Benchohra and H. Hammouche, Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay, Asian-Eur. J. Math, 1, No 4 (2008), 449-468; doi: 10.1142/s1793557108000382.
[2] R.P. Agarwal, S. Baghli and M. Benchohra, Controllability for semilinear functional and neutral functional evolution equations with infinite delay in Frechet spaces, Appl. Math. Optim., 60 (2009), 253-274; doi: 10.1007/s00245-009-9073-1.
[3] N.U. Ahmed, Dynamic Systems and Control with Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006); doi: 10.1142/6262.
[4] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Harlow John Wiley & Sons, Inc., New York (1991).
[5] D. Aoued and S. Baghli-Bendimerad, Controllability of mild solutions for evolution equations with infinite state-dependent delay, Euro. J. Pure Appl. Math., 9, No 4 (2016), 383-401.
[6] D. Aoued and S. Baghli-Bendimerad, Mild solution for perturbed evolution equations with infinite state-dependent delay, Electronic J. Qual. Theor. Diff. Equa., 59 (2013), 1-24;
doi: 10.14232/ejqtde.2013.1.59.
[7] A. Arara, M. Benchohra, L. Gorniewicz and A. Ouahab, Controllability results for semilinear functional differential incluisons with unbounded delay, Math. Bulletin, 3 (2006), 157-181; doi: 1536-0059/03/0603- 0287.
[8] C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electronic J. Qual. Theor. Diff. Equa., 5 (2003), 1-15; doi: 10.14232/ejqtde.2003.1.5.
[9] S. Baghli-Bendimerad, Global mild solution for functional evolution inclusions with state-dependent delay, J. Advan Resea. Dyn. Cont. Syst., 5, No 4 (2013), 1-19.
[10] S. Baghli and M. Benchohra, Existence results for semilinear neutral functional differential equations involving evolution operators in Frechet spaces, Georgian Math. J., 17, No 3 (2010), 423-436; doi: 10.1515/gmj.2010.030.
[11] S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential and Integral Equations, 23, No 1/2 (2010), 31-50; doi: 10.57262/die/1356019385.
[12] S. Baghli andM. Benchohra, Multivalued evolution equations with infinite delay in Frechet spaces, Electr. J. Qual. Theory. Diff. Eq., 33 (2008), 1-24; doi: 10.14232/ejqtde.2008.1.33.
[13] S. Baghli and M. Benchohra, Perturbed functional and neutral functional evolution equations with infinite delay in Fr´echet spaces, Electr. J. Diff. Eq., 69 (2008), 1-19.
[14] S. Baghli and M. Benchohra, Uniqueness results for partial functional differential equations in Fr´echet spaces, Fixed Point Theory, 9, No 2 (2008), 395-406.
[15] S. Baghli, M. Benchohra and K. Ezzinbi, Controllability results for semilinear functional and neutral functional evolution equations with infinite delay, Surv. Math. Appl., 4, No 2 (2009), 15-39.
[16] S. Baghli and M. Benchohra, J.J. Nieto, Global uniqueness results for partial functional and neutral functional evolution equations with state-dependent delay, J. Advan. Resea. Diff. Eq., 2, No 3 (2010), 35-52.
[17] M. Benchohra and S.K. Ntouyas, Existence of mild solutions on semiinfinite interval for first order differential equation with nonlocal condition, Comment. Math. Univ. Carolinae., 41, No 3 (2000), 485-491.
[18] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494-505;
doi: 10.1016/0022-247x(91)90164-u.
[19] L. Byszewski and H. Akca, On a mild solution of a semilinear functionaldifferential
evolution nonlocal problem, J. Appl. Math. Stochastic Anal., 10 (1997), 265-271;
doi: 10.1155/s1048953397000336.
[20] R. Fiorenza, Holder and Locally Holder Continuous Functions, and Open Sets of Class Ck,
Ck,λ, Birkhauser (2017); doi: 10.1007/978-3-319-47940-8.
[21] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
[22] E. Hernandez, R. Sakthivel and S. Tanaka Aki, Existence results for impulsive evolution differential equations with state-dependent delay, Electr. J. Diff. Equat., 28 (2008), 1-11.
[23] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin (1991); doi: 10.1007/BFb0084432.
[24] M.L. Li, M.S. Wang and X.L. Fu, Controllability of semilinear evolution equations with nonlocal conditions, Acta Mathematicae Applicatae Sinica, 21, No 4 (2005), 697-704;
doi: 10.1007/s10255-005-0277-0.
[25] A. Mebarki and S. Baghli-Bendimerad, Neutral multivalued integrodifferential evolution equations with infinite state-dependent delay, Turk. J. Math., 44 (2020), 2312-2329;
doi: 10.3906/mat-2007-66.
[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Springer-Verlag, New York (1983); doi: 10.1007/978-1-4612-5561-1.
[27] M. D. Quinn and N. Carmichael, An approach to nonlinear control problems using fixed point methods, degree theory and pseudoinverses, Numer. Funct. Anal. Optim., 7 (1984-1985), 197-219; doi: 10.1080/01630568508816189.
[28] J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci. 119, Springer-Verlag, New York (1996); doi: 10.1007/978-1-4612-4050-1.
(c) 2010, Academic Publications, Ltd.; https://www.diogenes.bg/ijam/