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Abstract

In this paper, we consider the loaded Korteweg-de Vries equation of neg-
ative order in the class of periodic functions corresponding to the eigenvalues
of the corresponding spectral problem. It is shown that the considered equa-
tion can be integrated by the method of the inverse spectral problem. The
evolution of the spectral data of the Sturm-Liouville operator with a periodic
potential associated with the solution of the considered equation is determined.
The obtained results make it possible to apply the inverse problem method for
solving the loaded Korteweg-de Vries equation of negative order in the class
of periodic functions corresponding to the eigenvalues of the corresponding
spectral problem.
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1. Introduction

The Korteweg-de Vries (KdV) equation is one of the representatives of the
class of completely integrable nonlinear partial differential equations, which
is of great practical importance. The complete integrability of this equation
by the inverse problem method, in the class of rapidly decreasing functions,
was first established in [1]. The works [2, 3, 4, 5, 6, 7, 8] are devoted to the
investigation of the KdV equation in the class of finite-zone periodic and quasi-
periodic functions. In [9], the KdV equation with a self-consistent source was
considered in the class of rapidly decreasing functions, and the KdV equation
with a self-consistent source in the class of periodic functions was studied in
[10].

In the work [11] it was integrated the Korteweg-de Vries equation with a
loaded term in the class of periodic functions. The works [12, 13] are devoted to
the studies of the nonlinear Schrödinger equation and the modified Korteweg–
de Vries equation with a loaded term in the class of periodic functions.

The (G′/G) - expansion method was used to integrate the loaded Korteweg-
de Vries (KdV) equation and the loaded modified Korteweg-de Vries (mKdV)
equation in [14, 15, 16].

Most of the studies concerning the study of integrable equations with a self-
consistent source are related to non-linear evolutionary equations of positive
order.

Works [17, 18] are devoted to the study of the KdV equation of negative
order. In particular, J.M. Verosky [17], while studying symmetries and neg-
ative powers of a recursive operator, obtained the following KdV equation of
negative order: {

qt = px
pxxx + 4qpx + 2qxp = 0.

(1)

S.Y. Lou [18] presented additional symmetries based on the invertibility of
the recursive operator of the KdV system and, in particular, derived the KdV
equation of negative order in the following form

qt = 2ppx, pxx+qp = 0 ⇔
(
pxx
p

)
t

+2ppx= 0. (2)

The study of integrable hierarchies of negative order plays a significant
role in the theory of cusp solitons [19, 20]. In [21] it was studied the hierarchy
of the KdV equation of negative order, in particular, equations (1) and (2).

In [22, 23, 24, 25, 26] it was investigated the Hamiltonian structure, an
infinite set of conservation laws, N-soliton, quasi-periodic wave solutions for
the KdV equation of negative order.

In [34, 35], the KdV equation of negative order with a self-consistent inte-
gral source was studied in the class of periodic functions.
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In this paper, the method of the inverse spectral problem is applied to the
integration of the loaded Korteweg-de Vries equation of negative order in the
class of periodic functions.

Consider the following loaded Korteweg-de Vries equation of negative order{
qt = −2ppx + γ(t) · q |x=0 · qx
pq − pxx = 0

, t > 0, x ∈ R1, (3)

with the conditions

q(x, t)|t=0 = q0(x), (4)

p(x, t)|x=0 = p0(t),

where q0(x),p0(t) and γ(t) ∈ C[0, ∞) are given real continuous functions,
besides q0(x) - π-periodic function. It is required to find the real functions
q(x, t) and p2(x, t), which are π - periodic with respect to the variablex:

p2(x+ π, t) ≡ p2(x, t), q(x + π, t) ≡ q(x, t), t ≥ 0, x ∈ R1, (5)

and satisfied the smooth conditions:

q(x, t) ∈ C1
x(t > 0) ∩ C1

t (t > 0) ∩ C(t ≥ 0),
p(x, t) ∈ C2

x(t > 0) ∩ C(t ≥ 0).
(6)

The purpose of this work is to provide a procedure for constructing a solu-
tion to problem (3)-(6), within the framework of the inverse spectral problem
for the Sturm-Liouville operator with a periodic coefficient.

2. Basic facts about the direct and inverse spectral problem for the
Sturm-Liouville operator with periodic coefficient

In this section, for the sake of completeness, we present some basic informa-
tion concerning the inverse spectral problem for the Sturm-Liouville operator
with a periodic potential (see [27, 28, 29, 30, 31, 32, 33]).

Consider the following Sturm-Liouville operator on the line

Ly ≡ −y′′ + q(x)y = λ y, x ∈ R, (7)

where q(x) - real continuous π - periodic function.

Denote by c(x, λ) and s(x, λ) solutions of (7) satisfied initial conditions
c(0, λ) = 1, c′(0, λ) = 0 and s(0, λ) = 0, s′(0, λ) = 1. The function Δ(λ) =
c(π, λ) + s′(π, λ) is called Lyapunov’s function or Hill’s discriminant.

The spectrum of the operator (7) is purely continuous and coincides with
the following set

E = {λ ∈ R1 : −2 ≤ Δ(λ) ≤ 2 }
= [λ0, λ1]

⋃
[λ2, λ3]

⋃
...
⋃

[λ2n, λ2n+1]
⋃

... .

The intervals (−∞, λ0), (λ2n−1, λ2n), n ≥ 1 are called gaps. Here λ0, λ4k−1,
λ4k - are eigenvalues of periodic problem (y(0) = y(π), y′(0) = y′(π)), and
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λ4k+1, λ4k+2 - are eigenvalues of antiperiodic problem (y(0) = −y(π), y′(0) =
−y′(π)) for equation (7).

Let ξn, n ≥ 1 be the roots of equation s(π, λ) = 0. Note that, ξn, n ≥ 1
coinside with eigenvalues of the Dirichlet problem (y(0) = y(π) = 0) for the
equation (7), in addition the inclusions ξn ∈ [λ2n−1, λ2n], n ≥ 1 hold. The
numbers ξn, n ≥ 1 with the signs σn = sign {s′(π, ξn)− c(π, ξn)}, n ≥ 1 are
called the spectral parameters of the problem (7). The spectral parameters ξn,
σn, n ≥ 1 with boundaries λn, n ≥ 0 of the spectrum are called the spectral
data of the operator (7). Reconstruction of the coefficient q(x) from spectral
data is called the inverse spectral problem for the operator (7).

The spectrum of the Sturm-Liouville operator with coefficient q(x+τ) does
not depend on the real parameter τ , and the spectral parameters depend on τ :
ξn(τ), σn(τ), n ≥ 1. The spectral parameters satisfy the following Dubrovin
system of equations

dξn
dτ

= 2(−1)n−1σn(τ)
√

(ξn − λ2n−1)(λ2n − ξn)

×
√√√√√√√

(ξn − λ0)

∞∏
k = 1
k 	= n

(λ2k−1 − ξn)(λ2k − ξn)

(ξk − ξn)2
, n ≥ 1. (8)

The Dubrovin system of equations and the following trace formulas

q(τ, t) = λ0 +
∞∑
k=1

(λ2k−1 + λ2k − 2ξk(τ, t)),

give a method for solving the inverse problem.

3. Evolution of spectral parameters

The main result of this paper is the following theorem.

Theorem. Let q(x, t) - is the solution of the problem (3)-(6). Then the
spectrum of the operator (7) does not depend on parameter t, and the spectral
parameters ξn(t), n = 1, 2, ... , satisfy the analog of the system of Dubrovin
equations:

ξ̇n = 2(−1)n+1σn(t)

{
1

2ξn
p2(0, t) + γ(t)q(0, t)

}

×
√
(ξn − λ2n−1)(λ2n − ξn)

√√√√√√√
(ξn − λ0)

∞∏
k = 1
k 	= n

(λ2k−1 − ξn)(λ2k − ξn)

(ξk − ξn)2
, (9)
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where n ≥ 1, the sign of σn(t) changes to the opposite for each collision of a
point ξn(t) with the boundaries of its gap [λ2n−1, λ2n]. Moreover, the following
initial conditions are satisfied

ξn(t)|t=0 = ξ0n, σn(t)|t=0 = σ0
n , n ≥ 1,

where ξ0n, σ
0
n, n ≥ 1 - are spectral parameter of the Sturm-Liouville operator

with coefficient q0(x).

P r o o f. In [34] it was shown, that if q(x, t) is a solution of system{
qt = −2ppx +G(x, t)
pq − pxx = 0,

(10)

then the following equalities hold

ξ̇n = − 1

2ξn

(
(y

′
n)

2(π, t)− (y
′
n)

2(0, t)
)
p2(0, t) +

∫ π

0
y2n(x, t)G(x, t)dx, (11)

where yn(x, t), n = 1, 2, ... are orthonormal eigenfunctions of the Dirichlet
problem (y(0) = 0, y(π) = 0) for equation (7) corresponding to the eigenval-
ues ξn(t), n = 1, 2, ...

Assuming

G(x, t) = γ(t)q(0, t)qx(x, t),

we get ∫ π

0
G · y2ndx =

(
−(y

′
n)

2(π, t)− (y
′
n)

2(0, t)
)
γ(t)q(0, t). (12)

Substituting the expression (12) into (11) we obtain

ξ̇n = [(y
′
n)

2(π, t)− y
′
n)

2(0, t)] ×
{
− 1

2ξn
p2(0, t) − γ(t)q(0, t)

}
. (13)

Using the equalities

yn(x, t) =
1

cn(t)
s(x, ξn(t), t),

c2n(t) ≡
∫ π

0
s2(x, ξn(t), t)dx = s′(π, ξn(t), t)

∂s(π, ξn(t), t)

∂λ
,

we have

(y
′
n)

2(π, t)− (y
′
n)

2(0, t) =
1

∂s(π,ξn(t),t)
∂λ

(
s′(π, ξn(t), t)− 1

s′(π, ξn(t), t)

)
.

By virtue of s′(π, ξn, t)− 1
s′(π,ξn,t) = σn(t)

√
Δ2 (ξn(t))− 4 we get (y

′
n)

2(π, t)−
(y

′
n)

2(0, t) =
σn(t)

√
Δ2(ξn(t))−4

∂s(π,ξn(t),t)
∂λ

.

Here σn(t) = sign {s′(π, ξn(t), t)− c(π, ξn(t), t)}.
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It follows from the expansions

Δ2(λ)− 4 = 4π2(λ0 − λ)

∞∏
k=1

(λ2k−1 − λ)(λ2k − λ)

k4
,

s(π, λ, t) = π
∞∏
k=1

ξk(t)− λ

k2
,

that

(y
′
n)

2(π, t)− (y
′
n)

2(0, t) = 2(−1)nσn(t)
√

(ξn − λ2n−1)(λ2n − ξn)

×
√√√√√√√

(ξn − λ0)
∞∏

k = 1
k 	= n

(λ2k−1 − ξn)(λ2k − ξn)

(ξk − ξn)2
. (14)

Due to (13) and (14) we obtain (9).

Now we prove the independence on t of the eigenvalues λn, n = 0, 1, 2, ...
of the periodic and antiperiodic problems for the Sturm-Liouville equation (7).
According to [34]

λ̇n(t) =

∫ π

0
G(x, t)v2n(x, t)dx,

where vn(x, t) - is normalized eigenfunction of a periodic or antiperiodic prob-
lem for the Sturm-Liouville equation (7). Taking into account the form of

the function G(x, t), and acting as before, we get λ̇n(t) = 0. The theorem is
proven. �

Result 1. If we consider q(x+ τ, t) instead of q(x, t), then the eigenvalues
of the periodic and antiperiodic problem do not depend on the parameters
τand t, while the eigenvalues ξn of the Dirichlet problem and the signs σn
depend on τ and t: ξn = ξn(τ, t), σn = σn(τ, t) = ±1, n ≥ 1. In this case, the
system (9) has the form

∂ξn
∂t

= 2(−1)n+1σn(τ, t)

{
1

2ξn
p2(τ, t) + γ(t)q(0, t)

}

×
√

(ξn − λ2n−1)(λ2n − ξn)

√√√√√√√
(ξn − λ0)

∞∏
k = 1
k 	= n

(λ2k−1 − ξn)(λ2k − ξn)

(ξk − ξn)2
, (15)

where n ≥ 1.
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Taking into account the trace formulas, we get

q(τ, t) = λ0 +

∞∑
k=1

(λ2k−1 + λ2k − 2ξk(τ, t)), (16)

p2(τ, t) = 2

∞∑
k=1

∫ τ

0

∂ξk(s, t)

∂t
ds

+ γ(t)q(0, t)q(τ, t) − γ(t)q2(0, t) + p20(t). (17)

Result 2. This theorem provides a method for solving problem (3)-(6).
To do this, first find the spectral data λn, ξ0n(τ), σ

0
n(τ), n ≥ 1, of the Sturm-

Liouville operator corresponding to the potential q0(x+ τ). Then, solving for
the τ = 0 the Cauchy problem

ξn(τ, t)|t=0 = ξ0n(τ), σn(τ, t)|t=0 = σ0
n(τ) , n ≥ 1 (18)

for the Dubrovin system of equations (15), we find ξn(0, t) and σn(0, t), n ≥ 1.
Based on these data, we find q(0, t). After, substitute the found expression
for q(0, t) into equation (15), and solving the Cauchy problem for an arbitrary
value τ , we find ξn(τ, t), n ≥ 1. By the trace formula (16) we determine q(x, t)
and then from the formula (17) we determine p2(x, t).
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