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1. Introduction

The introduction of the theory of dynamic equation on time scale in 1988
by Hilger as found in [3] addresses one of the major challenges of mathemat-
ical sciences by unifying the seemingly disparate fields of discrete dynamical
systems (difference equations) and continuous dynamical systems (differential
equations) into one comprehensive mathematical model equation known as dy-
namic equation. Dynamic equations on time scale are defined on connected,
discrete or combination of both sets. It provides a generalization of differential
and difference analysis. Extensive research on dynamic equation on time scale
are found in [2], [4], [5].

The theory of Lebesgue integral fails to apply effectively to mathematical
space that admits more structure than just measure. The discovery of the
Kurzweil integral inevitably led to the problem of finding the integral that
integrates all derivatives (including the Lebesgue integral). This also results
in multiple definitions of the integrals that are referred to as non-absolutely
convergent

Denjoy [7] and Luzin [17] were the earliest mathematicians to have pre-
sented the fundamental description of the non-absolutely convergent integrals.
They defined the function F : I → R as the antiderivative (or indefinite in-
tegral) of the function f : I → R if F ′(x) = f(x) for I = [a, b] a bounded
interval. Thus the increment of F over I is the definite integral of f over I.
However, the constraint of everywhere existence of F ′ might be exceedingly
limiting, and so ignoring the set of measure zero is a good idea. This suggests
that F ′(x) = f(x) is not necessarily everywhere, but rather for some points
that do not belong to an exceptional set. As a result, the indefinite integral
loses its uniqueness, which can only be addressed by making additional as-
sumptions on F (x), such as absolute continuity or its generalization. Thus [6]
developed the concept of generalized ordinary differential equation.

We consider the dynamic equation on time scale of the form

xΔ(t) = f(x(t), t), t ∈ T, (1)

that is non-absolutely convergent, and so lost the uniqueness of the indefinite
integral of the equation due to the extremely restrictive condition of every-
where existence of xΔ(t). However, the introduction of the Kurzweil integral,
which is studied as the generalized ordinary differential equations (GODE)
is employed to address the lapses. This is made possible by the established
correspondence between the dynamic equations on time-scale and generalized
ordinary differential equations as in Slavik [5], using constructed local flow of
topological dynamics that satisfy the technical conditions of absolute continu-
ity and generalization conditions.

We consider a compact interval [a, b] ∈ R with a finite set of points
Λ = {a = t0 ≤ α1 ≤ t1 ≤ α2 ≤ t2 ≤ ... ≤ t1−i ≤ αi ≤ ti = b} such that a =
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t0 < t1 < ...ti+1 = b and define a tagged division of the compact inter-
val as a finite collection of point-interval pairs P (α,Λ) = (αi, [ti− 1, ti])
such that [ti− 1, ti] is non-overlapping. A gauge on [a, b] is the function
δ : [a, b] ∈ (0,∞) and a tagged division P (αi, [ti− 1, ti]) is δ-fine, if for ev-
ery i = 1, 2, ...[ti−1, ti] ⊂ (αi − δ(αi), αi + δ(αi)). Using the definition of
the topological norm ‖.‖B in the Banach space Bc, G([a, b], Bc), we denote
A(x, t) : Bc × [a, b] → Rn the set of all regulated functions on [a, b] ⊂ R which
is in the Banach space when equipped with the supremum norm ‖A‖∞ =
sup{‖A(t, x)‖}. The regulated function is of bounded variation on [a, b] if
varabA(x, t) < ∞, where

varabA(x, t) = sup{
n(p)∑
i=1

‖A(x(ti), ti)−A(x(ti−1)ti−1)‖W }.

Definition 1.1. Given any ε > 0 and a gauge δ : [a, b] → (0,∞) such
that there exists a unique element I ∈ Bc on the interval [a, b] satisfying

‖I − S(dA,P )‖ < ε,

for all δ − fine partition P ([a, b], λ), where

S(dA,P ) =

n∑
i=1

A(x(ti), ti)−A(x(ti−1)ti−1),

is the integral sum that corresponds to the function A(x(t), t) and the partition
P , then

I =

∫ b

a
DA(x(t), t), (2)

is known as the Kurzweil integral.

The generalized ordinary differential equation is the differential equation
that emerges from the fundamental Kurzweil integral equation (2). The gen-
eralized ordinary differential equation’s qualitative characteristics are exten-
sively studied in [6], [10], [16], [9], [11], [12].

2. Preliminary results

We consider the generalized ordinary differential equation resulting from
(2) as

dx

dt
= DA(x, t), (3)
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for A : Bc × [a, b] → Rn. The real value function x : [a, b] → Rn is a solution
of (3) on the interval [a, b] ⊂ R for all t ∈ [a, b] if

x(s2)− x(s1) =

∫ s2

s1

DA(x(t), t) (4)

holds for every s1, s2 ∈ [a, b].

Lemma 2.1. (Proof in [14])
If x : [a, b] → Rn is a solution of (4), then

lim
s→v

[x(s)−A(x(v), s) +A(x(v), v)] = x(v), s ∈ [a, b].

Lemma 2.2. (Proof in [14])
Assume that a function U : [a, b]× [a, b] → Rn is given for which the integral∫ b
a DU(τ, t) exists. If V : [a, b]×[a, b] → Rn is such that the integral

∫ b
a DU(τ, t)

exists, and if there is a guage δ ∈ [a, b] such that

|t− τ | ‖U(τ, t) − U(τ, τ)‖ ≤ [t− τ ][V (τ, t)− V (τ, τ)],

for every t ∈ [τ − δ(τ), τ + δ(τ)], then the inequality∥∥∥∥
∫ b

a
DU(τ, t)

∥∥∥∥ ≤
∫ b

a
DV (τ, t)

holds.

Remark 2.1. Consider A : W → Rn for which W = Bc × [a, b], such

that
∫ t2
t1

DA(x, t) exists for t1, t2 ∈ [a, b]. Assume there exist a nondecreasing

function h : [a, b] → R, such that
∫ t2
t1

dh(t) = h(t2) − h(t1) and a continuous

increasing function w : [0,∞) → R with w(0) = 0, then consequent of Lemma
2.2, the following conditions hold for all t ∈ [a, b]:

i ‖A(x, t2)−A(x, t1)‖ ≤ |h(t2)− h(t1)|.
ii ‖A(x, t2)−A(x, t1)−A(y, t1) +A(y, t2)‖

≤ w(‖x − y‖)|h(t2)− h(t1)|.

Let f ∈ BV ([a, b], Bc) be a regulated function, and g : [a, b] → R a strictly
increasing function on [a, b], then for every ε > 0 there exists a gauge δ ∈ [a, b]
such that

‖S(f, dg, P ) − 1‖ < ε,

for all δ-fine partitions P of [a, b], where

S(f, dg, P ) =

n(p)∑
i=1

f(s)[g(αi)− g(αi−1)], (5)
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and

I =

∫ b

a
f(s)dg(s), (6)

is known as the Kurzwiel-Stieltjes integral.

Let T be a time scale, a, b ∈ T, a < b and IT = [a, b]T a dense set. Consider
a strictly increasing real-valued function g on IT , then for any partition P ⊂ IT
we have

g(P ) = {g(a) = g(t0), g(t1), ...g(tn−1), g(tn)

= g(b)} ⊂ g(IT ) = [g(a), g(b)]R ,

and Δgi = g(ti)− g(ti−1), such that
∑n

i=1 Δgi = g(b) − g(a).

Let f ∈ BV ([a, b], Bc), for every t ∈ [ti−1, ti]T ⊂ IT and P = {t0, t1, ..., tn}
⊂ IT , such that mΔi = inf

t∈[ti−1,ti]
f(t) and MΔi = sup

t∈[ti−1,ti]
f(t), then UΔ(P, f, g)

=
∑n

i=1 MΔgi and LΔ(P, f, g) =
∑n

i=1mΔgi are the upper and lower Darboux
integral respectively. Also, for g : [a, b]T → R be an increasing function on a
dense set [a, b]T , we defined the real number t∗ = sup{s ∈ T, s < t}, so that
g(t) = t∗ = t, and UΔ(P, f, g) =

∑n
i=1 MΔt and LΔ(P, f, g) =

∑n
i=1 mΔt, are

the Riemann sums of upper and lower Delta (Δ) integral respectively.

Suppose f ∈ BV ([a, b], Bc) and m ≤ f(t) ≤ M, t ∈ I, we have that

m(g(b)) − g(a)) ≤ LΔ(P, f, g) ≤ UΔ(P, f, g) ≤ M(g(b) − g(a)), (7)

so that inf UΔ(P, f, g) =
∫ b
a f(t)Δg and supLΔ(P, f, g) =

∫ b
a f(t)Δg. If∫ b

a
f(t)Δg =

∫ b

a
f(t)Δg, (8)

then f is Riemann-Stieltjes integrable with respect to g on [a, b]T and

IT =

∫ b

a
f(t)Δg(t) (9)

is known as the Riemann-Stieltjes integral. In particular, for g(t) = t, (9) has
the form

IT =

∫ b

a
f(t)Δt, (10)

which is known as Riemann-Delta integral.

Theorem 2.1. (Equivalent Theorem) Let t ∈ [a, b]T be a dense
point and g : [a, b]T → R be strictly increasing function on [a, b]T . Let f ∈
BV (W,Rn), such that fT and gT are restriction of f and g to T . Assume that
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t ∈ T is right dense and t ≤ supT such that there exist t∗ = sup{s ∈ T, s < t},
then g(t) = t∗ = t and ∫ b

a
f(t)dg(t) =

∫ b

a
fT (t)Δ(t). (11)

P r o o f. Given that f ∈ BV (W,Rn) is a regulated function and g :
[a, b] → R a strictly increasing function on [a, b], then the Kurzweil-Stieltjes
integral of f with respect to the strictly increasing function g on [a, b] is well
defined. That is given any partition P ∈ P ([a, b]T ) such that P = {a = t0 <
t1 < ... < tn = b}. Then by (5),∫ b

a
f(t)dg(t) ≤

n∑
i=0

MΔiΔgi(t) = UΔ(fi,Δgi, P ), (12)

where MΔi = supt∈[a,b]T f(t). If we take the infimum of the right hand side of

(12) over all partition of P ([a, b]T , f(t)), we have

inf
t∈[a,b]T

UΔ(fi(t),Δgi(t), P ) =

∫ b

a
fT (t)ΔgT (t).

Hence, ∫ b

a
f(t)dg(t) ≤

∫ b

a
fT (t)ΔgT (t). (13)

Again, ∫ b

a
f(t)dg(t) ≥

n∑
i=0

mΔiΔgi(t) = LΔ(fi,Δgi, P ), (14)

where mΔi = inft∈[a,b]T f(t). If we take the supremum of the right hand side
of (14) over all partition of P ([a, b]T , f(t)), we have

sup
t∈[a,b]T

LΔ(fi(t),Δgi(t), P ) =

∫ b

a
fT (t)ΔgT (t).

Hence, ∫ b

a
f(t)dg(t) ≥

∫ b

a
fT (t)ΔgT (t). (15)

Combining (13) and (15), we have∫ b

a
fT (t)ΔgT (t) ≤

∫ b

a
f(t)dg(t) ≤

∫ b

a
fT (t)ΔgT (t),

and by (8) we have ∫ b

a
f(t)dg(t) =

∫ b

a
fT (t)ΔgT (t). (16)
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In particular, given that t ∈ T is a dense point such that t ≤ supT and there
exists t∗ = sup{s ∈ T, s < t}, so that g(t) = t∗ = t and∫ b

a
f(t)dg(t) =

∫ b

a
fT (t)Δt,

hence the theorem is proved. �

Consider an initial value problem of the dynamic equation on [a, b]T ,

xΔ(t) = f(x, t), x(t) = x(t0), t ∈ [a, b]T . (17)

The real value function x : [a, b]T → Rn is a solution of (17) for all t ∈ [a, b] if

x(t) = x(t0) +

∫ t

t0

f(x, s)Δs, t, t0 ∈ [a, b]. (18)

Remark 2.2. Let f : Bc × T → Rn be a Lebesgue integrable, rd-
continuous function on [a, b]T . The Caratheodory assumptions we make on
the integral of the function of (18) are as follows:

A1 if f(x, t) is rd-continuous function,for x : T → R being continuous,

then t → ∫ t
a f(x, s)Δs is rd-continuous.

A2 there exists a Lebesgue integrable function mo : T → R such that

‖
∫ t1

t0

f(x, s)Δs‖ ≤
∫ t1

t0

m0(s)Δs

for t0, t1 ∈ T, x ∈ G(T,Rn).
A3 there exists a Lebesgue integrable function m1 : T → R such that

‖
∫ t1

t0

f(x− y, s)Δs‖ ≤
∫ t1

t0

m1(s)‖x− y‖Δs

for t0, t1 ∈ T, x, y ∈ Bc.

By the implication of Theorem 2.2 and equation (11), for f : Bc× [a, b] →
Rn belonging to the class of Caratheodory function, measurable with refer-
ences to a regulated function g : [a, b] → R, then the Kurzweil-Stieltjes integral

x(t) = x(t0)−
∫ t

a
f(x, s)dg(s), (19)

also satisfies Remark 2.2 everywhere on [a, b] ⊂ R.

Proposition 2.1. Let f ∈ BV (Bc × [a, b], Rn) be a Caratheodory func-
tion and g : [a, b] → R a regulated non-decreasing function. Then, the
Kurzweil integrated function A : Bc × [a, b] → Rn defined as
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A(x, t) =

∫ t

t0

f(x, s)dg(s), (20)

satisfies Remark 2.1 if we can find a non-decreasing function h(t) : [a, b] → R
that satisfies

h(t) =

∫ t1

t0

(m0(s) +m1(s))dg(s). (21)

P r o o f. Let the regulated function g : [a, b] → R be given such that
g = g+ − g−, and

∫
R fdg =

∫
R fdg+ − ∫

R fdg−, so that by (20) we can have

A+(x, t) =
∫ t
t0
f(x, s)dg+(s) and A−(x, t) =

∫ t
t0
f(x, s)dg−(s) respectively. By

Remark 2.2, we have

‖A−(x, t1)−A−(x, t0)‖ =

∥∥∥∥
∫ t1

t0

f(x, s)dg−(s)
∥∥∥∥

=

∥∥∥∥
∫ t1

t0

f(x, s)Δ−(s)
∥∥∥∥

≤
∥∥∥∥
∫ t1

t0

m0(s)ds
−
∥∥∥∥,

and

‖A+(x, t1)−A+(x, t0)‖ =

∥∥∥∥
∫ t1

t0

f(x, s)dg+(s)

∥∥∥∥
=

∥∥∥∥
∫ t1

t0

f(x, s)Δ+(s)

∥∥∥∥
≤

∥∥∥∥
∫ t1

t0

m0(s)ds
+

∥∥∥∥,
so that

‖A(x, t1)−A(x, t0)‖
= ‖A+(x, t1)−A+(x, t0) +A−(x, t0)−A−(x, t1)‖
≤

∫ t1

t0

m0(s)ds
+ +

∫ t1

t0

m0(s)ds
−

=

∫ t1

t0

m0(s)Δs.

We define

h1(t) =

∫ t

t0

(m0(s))Δs, t, t0 ∈ [a, b], (22)
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for h1 : [a, b] → R is a non-decreasing function, and m0 a nonnegative function
on [a, b], so that

‖A(x, t1)−A(x, t0)‖ ≤
∫ t1

t0

m0(s)Δs ≤ |h1(t1)− h1(t0)|.

Also

‖A+(x, t1)−A+(x, t0) +A+(y, t0)−A+(y, t1)‖
=

∥∥∥∥
∫ t1

t0

f(x, s)dg+(s)−
∫ t1

t0

f(y, s)dg+(s)

∥∥∥∥
=

∥∥∥∥
∫ t1

t0

f(x− y, s)Δ+s

∥∥∥∥
≤ w‖x− y‖

∫ t1

t0

m1(s)Δs+

and

‖A−(x, t1)−A−(x, t0) +A−(y, t0)−A−(y, t1)‖
=

∥∥∥∥
∫ t1

t0

f(x, s)dg−(s)−
∫ t1

t0

f(y, s)dg−(s)
∥∥∥∥

=

∥∥∥∥
∫ t1

t0

f(x− y, s)Δ−s
∥∥∥∥

≤ w‖x− y‖
∫ t1

t0

m1(s)Δs−,

so that,

‖A(x, t1)−A(x, t0) +A(y, t0)−A(y, t1)‖
≤ w‖x − y‖

∫ t1

t0

m1(s)Δ
+s+ w‖x− y‖

∫ t1

t0

m1(s)Δ
−s

= w‖x − y‖
∫ t1

t0

m1(s)Δs.

We define

h2(t) =

∫ t

t0

m1(s)Δs, t, t0 ∈ [a, b] (23)

for h2 : [a, b] → R is a non-decreasing function, and m1 a nonnegative function
on [a, b] , so that

‖A(x, t1)−A(x, t0) +A(y, t0)−A(y, t1)‖ = w‖x− y‖|h2(t0)− h1(t0)|.
Then for h(t) = h1(t) + h2(t), the proposition is proved. �

Lemma 2.3. (Proof in [5])
Let x : [a, b] → Rn be a regulated function on [a, b], then any defined step
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function ϕ : [a, b] → Rn uniformly approximate x ∈ Bc on [a, b], such that for
ε > 0, ‖x(t) − ϕ(t)‖ < ε.

Definition 2.1. Let A : Bc×[a, b] → Rn be a regulated function on [a, b],
for every step function x(t) : [a, b] → Rn on a partition a = t0 < t1 < ...tn = b
such that x(t) = ci for t ∈ (ti−1,ti), then

∫ b

a
DA(x(t), t) =

n∑
i=0

((A(ci, t
−
i )−A(ci, t

+
i−1)

+ (A(x(ti−1), t
+
i−1)−A(x(ti−1), ti−1))

+ (A(x(ti), ti)−A(x(ti), t
−
i ))).

Lemma 2.4. Let the regulated function f : Bc × T → Rn be Kurzweil-
Stieltjes integrable with a measure function g : [a, b] → R, which is of bounded
variation on [a, b]. Given any step function x : [a, b] → Rn such that for
t → A(x, t) is regulated and (20) holds, then∫ b

a
DA(x, t) =

∫ b

a
f(x, t)dg(t). (24)

P r o o f. By Definition 2.1 for t → A(x, t) being a regulated function on
[a, b] and x(t) : [a, b] → Rn a step function on a partition a = t0 < t1 < ... <
tn = b, then for any ε > 0 and x(t) = ci for t ∈ (ti−1, ti), we have

∫ b

a
DA(x(t), t)

= lim
ε→0+

n∑
i=0

((A(x(ti−1), ti−1 + ε)−A(x(ti−1), ti−1)))

+ lim
ε→0+

n∑
i=0

((A(ci, ti − ε)−A(ci, ti−1 + ε)

+ lim
ε→0+

n∑
i=0

(A(x(ti), ti)−A(x(ti), ti − ε)). (25)

Also for t → f(x, t) being a regulated function, we have

∫ b

a
f(x, t)dg(t) =

n∑
i=0

∫ ti

ti−1

f(x(s), s)dg(s)
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= lim
ε→0−

n∑
i=0

∫ ti−1+ε

ti−1

f(x(s), s)dg(s)

+ lim
ε→0−

n∑
i=0

∫ ti−ε

ti−1+ε
f(x(s), s)dg(s)

+ lim
ε→0−

n∑
i=0

∫ ti

ti−ε
f(x(s), s)dg(s). (26)

Comparing (25) and (26) term by term, its observed that

lim
ε→0+

n∑
i=0

((A(x(ti−1), ti−1 + ε)−A(x(ti−1), ti−1)))

= lim
ε→0+

∫ ti−1+ε

ti−1

f(x(s), s)dg(s)

= f(x(ti−1).ti−1)Δ
+g(ti−1),

lim
ε→0+

n∑
i=0

((A(ci, ti − ε)−A(ci, ti−1 + ε)))

= lim
ε→0+

∫ ti−ε

ti−1+ε
f(x(s), s)dg(s)

= f(x(ti−1), ti−1)Δ
+g(ti−1).

Hence, (24) holds and the theorem is proved. �

Theorem 2.2. (Correspondence theorem [5]) Let f : Bc × [a, b]T →
Rn satisfies Remark 2.2 and A(x, t) : W → Rn satisfies Remark 2.1. If we have
a dense point t∗ = sup{s ∈ T, s < t} and g(t) = t∗ = t, then x(t∗) : T → Rn

is a solution of

xΔ(t) = f(x, t), t ∈ T (27)

and also a solution of the generalized differential equation

dx

dt
= DA(x, t), (28)

where

A(x, t) =

∫ t

t0

f(x, s)dg(s).

Also, every solution y : T → Rn of (28) can be expressed as y = x, where
x : T → Rn is a solution of (27).

P r o o f. Let v ∈ T . If x : [a, b]T → Rn is a solution of (27), then
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x(s) = x(v) +

∫ s

v
f(x, t)Δt, s ∈ T.

It follows that by (11) for g(t∗) = t, we have

x(s) = x(v) +

∫ s

v
f(x, t)dg(t).

Let s, v ∈ [a, b] ⊂ T be a compact interval, such that A(x, t) is regulated, since
f satisfies the Remark 2.2, then by Lemma 2.4, we have that

x(s) = x(v) +

∫ s

v
DA(x, t),

which implies that x is also a solution of the generalized ordinary differential
equation.

Conversely, let y : [a, b] → Rn be a solution of (28). Then

y(s) = y(a) +

∫ s

a
DA(y(τ), t), s ∈ [a, b].

Let [α, β]T be a time scale interval such that a, s ∈ [α, β]T . Then by Lemma
2.1

y(τ) = lim
u→τ+

(y(u)−A(y(τ), u) +A(y(τ), τ))

= lim
u→τ+

(y(u)−
∫ u

τ
f(y(τ), s)dg(s))

= lim
u→τ+

(y(u)−
∫ u

τ
f(y(τ), τ)Δg(τ))

= lim
u→τ+

y(u) for all τ ∈ [α, β],

and therefore limu→τ y(u) exists. Similarly, for every τ− ∈ (α, β] we have

y(τ) = lim
u→τ−

(y(u)−A(y(τ), u) +A(y(τ), τ))

= lim
u→τ−

(y(u)−
∫ u

τ
f(y(τ), s)dg(s))

= lim
u→τ−

(y(u)−
∫ u

τ
f(y(τ), τ)Δg(τ)) = lim

u→τ−
y(u).

Since y is regulated and therefore bounded on [α, β] there exists a bounded
set W ⊂ Bc × [a, b] such that y(t) ∈ W for every t ∈ [α, β]. The function f
satisfies Remark 2.1 on W and by Preposition 2.1, the function A satisfies
Remark 2.1 on W . Then by Lemma 2.4, we obtain

y(s) = y(a) +

∫ s

a
f(y(t), t)dg(t), s ∈ T. (29)

Thus y = x where x : T → Rn is the restriction of y to T . �
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3. Main Results

Theorem 3.1. Let f : Bc × [a, b]T → Rn and m0,m1 be Lebesgue
measurable functions, satisfying Remark 2.2. Assume A : W → Rn satisfies
Remark 2.1 for some continuous increasing function w : [0, w) → R with
w(0) = 0. Then there exists a solution x : [a, b]T → Bc in the open domain
W = [(x, t) : ‖x(t)− x(t0)‖ ≤ |h(t1)− h(t0)|, |t − t0| < ε] which satisfies (17).

P r o o f. Suppose the set y(t) ∈ Bb ⊂ Bc is the best approximation to
the point x ∈ Bc such that ‖y(t)− x̃‖ ≤ ε, for x(t0) = x̃ and f(y(t), t) being a
regulated function on [t0 −Δ, t0 +Δ]. Then for all y(t1), y(t2) ∈ Bb and any
α ∈ [0, 1] we have that

‖α(y(t2)) + (1− α)(y(t1))‖ = ‖αy(t2) + y(t1)− αy(t1)‖
≤ ‖α(y(t2)− y(t1))‖+ ‖y(t1)‖
≤ |α‖h(t2)− h(t1)‖+ c,

which is in Bb for any arbitrary c > 0. Hence Bb is a convex set.
We show that Bb is a closed set.
Let yk ∈ Bb for k = N , be a sequence converging to y ∈ Bb in [t0−Δ, t0+Δ]

such that limk→0 ‖yk(t)− y(t) = 0, for all t ∈ [t0 −Δ, t0 +Δ]. Then we have

‖y(t)− x̃‖ =

∥∥∥∥
∫ t

t0

f(y(s))Δs

∥∥∥∥ =

∥∥∥∥
∫ t

t0

DA(y(s), s)

∥∥∥∥
= ‖(A(y(t), t) −A(yk(t), t) +A(yk(t), t) −A(y(t), t0))‖
≤ w(‖yk − y‖)|h(t2)− h(t1)|
≤ w(‖ε‖)|h(t2)− h(t1)|.

Therefore for any arbitrary ε, ‖y(t)− x̃‖ ∈ Bb and Bb ⊂ Bc is closed.
Let the map T : Bb → Bb be defined such that Ty = x, where

Ty(t) = x̃+

∫ t

t0

DA(y(s), s), s ∈ [t0 − ε, to+ ε].

Then, using Lemma 2.1 and for t+ ∈ [t0, t0 +Δ], we have

‖Ty(t)− x̃‖ =

∥∥∥∥
∫ t+

t0

f(y(s), s)Δs

∥∥∥∥ =

∥∥∥∥
∫ t+

t0

DA(y(s), s)

∥∥∥∥
= A(y(t+), t+)−A(y(t0), t0)‖
≤ |h(t+)− h(t0)|. (30)
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Also for t− ∈ [t0 −Δ, t0] we have

‖Ty(t)− x̃‖ =

∥∥∥∥
∫ t0

t−
f(y(s), s)Δs

∥∥∥∥ =

∥∥∥∥
∫ t0

t−
DA(y(s))

∥∥∥∥
= ‖A(y(t0), t0)−A(y(t−), t−)‖
≤ |h(t0)− h(t−). (31)

Combining (30), (31), and by Remark 2.1, we obtain

‖Ty(s)− x̃‖ ≤ |h(t+)− h(t−)‖
and since f(y(t), t) ∈ Bb is rd-continuous, T : Bb → Bb map into itself.

Consider u, v ∈ Bb, such that by the definition of a bounded variation, we
have

‖Tu(t)− Tv(t)‖BV

= ‖Tu(t0 −Δ)− Tv(t0 +Δ) + vart+Δ
t−Δ(Tu− Tv)

≤ ‖Tu(t0)− Tv(t0)‖+ 2vart−Δ
t+Δ(Tu− Tv)

= 2vart+Δ
t−Δ(Tu− Tv).

By Lemma 2.2 and Remark 2.1, and for t+ ∈ [t0, t0 +Δ] we have

‖Tu(t)− Tv(t)‖ = ‖Tu(t+)− Tv(t+)− Tv(t0) + Tu(t0)‖

=

∥∥∥∥
∫ t+

t0

D[A(u(s), s)−A(v(s), s)]

∥∥∥∥
=

∫ t+

t0

f(s, u(s)− v(s))Δs

≤ w‖u(s)− v(s)‖
∫ t+

t0

m1(s)Δ
+s

≤ w‖u(s)− v(s)‖|h(t+)− h(t0)|. (32)

Also, for t− ∈ [t0 −Δ, t0]

‖Tu(t)− Tv(t)‖ = ‖Tu(t−)− Tv(t−)− Tv(t0) + Tu(t0)‖
=

∥∥∥∥
∫ t0

t−
D[A(u(s), s)−A(v(s), s)]

∥∥∥∥
=

∫ t0

t−
f(s, u(s)− v(s))Δs

≤ w‖u(s)− v(s)‖
∫ t0

t−
m1(s)Δ

−s

≤ w‖u(s)− v(s)‖|h(t0)− h(t−)|. (33)
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Combining (32) and (33) we have for t ∈ [t0 −Δ, t0 +Δ],

‖Tu(t)− Tv(t)‖ = ‖Tu(t+)− Tv(t+)− Tv(t−) + Tv(t−)
≤ w‖u− v‖|h(t+)− h(t−)|,

and thus

vart0+Δ
t0−Δ(Tu(t)− Tv(t)) ≤ w‖u− v‖|h(t+)− h(t−)|. (34)

Assume u, uk ∈ Bb, k∈ N is such that limk→∞ ‖uk(t) − u(t)‖ = 0 for t ∈
[t0 −Δ, t0 +Δ], then

lim
k→∞

‖uk − u‖|h(t+)− h(t−)| = 0

and

lim
k→∞

vart0+Δ
t0−Δ(Tuk(t)− Tu(t)) = lim

k→∞
(Tuk(t)− u(t)) = 0.

Hence T is a continuous map.
Let yk ∈ Bb, k ∈ N be an arbitrary sequence in Bb. Since yk is uniformly

bounded and consists of equally bounded functions, then by Helly’s selection
theorem yk contains a pointwise convergent subsequence denoted by yk, such
that limk→∞ yk(s) = y(s) for every s ∈ [t0 −Δ−, t0 +Δ+]. Then, for

x(t) = T (y(t)) = x̃+

∫ t

t0

DA(x, s)ds,

we have

‖Tyk(s)− x̃‖ =

∥∥∥∥
∫ t

t0

DA(xk, s)ds

∥∥∥∥ = ‖A(xk, t)−A(xk, t0)‖

=

∫ t

t0

f(xk, s)Δs‖ ≤
∥∥∥∥
∫ t

t0

m0(s)Δs

∥∥∥∥ ≤ |h(t) − h(t0)|

and

lim
k→∞

Tyk(t) = x(t).

This shows that every sequence in Bb contains a convergent subsequence on
[t0−Δ, t0+Δ] and then Bb is sequentially compact. Then there exists at least
one fixed point x = Ty such that

x = x̃+

∫ t

t0

DA(x(s), s), s ∈ [t0 − ε, t0 + ε]

and by Theorem 3.4 we conclude that there exists a solution x ∈ Bc satisfying
(17). �

Theorem 3.2. Consider the functions A : W → Rn and f : Bc×[a, b]T →
R satisfying Remarks 2.1 and 2.2 respectively. Let there exist a continuous
increasing function w : [0,∞) → R with w(0) = 0, w(r) > 0 for r > 0, such
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that for any ε > 0 we have α = ε(u−v)
w(r) > 0 for every u, v ∈ [a, b]. Then the

solution x : [a, b] → Rn of (17) is locally unique on [a, b].

P r o o f. Assume that y, x ∈ Bc are solutions of (17) such that y(t0) =
x(t0) = x̃, then

‖x(t)− y(t)‖ = ‖
∫ t

t0

[DA(y(s), s)−A(x(s), s)]‖

= ‖
∫ t

t0

f(y(s)− x(s), s)dgs‖

= ‖
∫ t

t0

f(y(s)− x(s), s)Δs‖

≤
∫ t

t0

m1(s)w‖y(s) − x(s)‖Δs

≤
∫ t0+

t0

m1(s)w‖y(s) − x(s)‖Δs

+

∫ t

t0+
m1(s)w‖y(s) − x(s)‖Δs.

But ∫ t0+

t0

w‖y(s) − x(s)‖m1(s)Δs ≤ w‖ỹ − x̃‖|h(t0+)− h(t0)|
= w(0) = 0.

Assume limt→0+ |h(t)−h(t0+)| = 0, then there exists α > 0 such that vartt0+h(s)
< α < ∞, so that

‖y(t)− x(t)‖ ≤
∫ t0

t0+
w‖y(s)− x(s)‖m1(s)Δs

≤ w‖y − x‖|h(t)− h(t0+)|
≤ w(‖y − x‖)α
= ε(t− t0+).

Since ε(t − t0+) → for t → t0+ then ‖y(t) − x(t) = 0 which implies that
y(t) = x(t) and the solution is unique. �

4. Illustrations

Example 4.1. Consider the function f : T → R defined by

f(t) =

{
1, if t ∈ Q

0, if t /∈ Q
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on [0, 1]T ⊂ T . Let be partition P = {0 = t0 < t1 < ... < tn = 1} ⊂ IT . Then
the function f(t) is Delta (Δ) integrable on [0, 1] if∫ 1

0
f(t)Δt =

∫ 1

0
f(t)Δt =

∫ 1

0
f(t)Δt.

The Riemann Sums of the Upper and lower Delta integral are

UΔ(f, P ) =

n∑
i=1

MΔt =

n∑
i=1

1.(ti − ti−1) = 1

and

LΔ(f, P ) =

n∑
i=1

mΔt =

n∑
i=1

0.(ti − ti−1) = 0,

respectively.
Also,

ILΔ(f,P ) =

∫ 1

0
f(t)Δt = sup(LΔ(f, P )) = 0

and

IU(f,P ) =

∫ 1

0
f(t)Δt = inf(LΔ(f, P )) = 1

are the lower and upper Delta integral, respectively.

Since ILΔ(f,P ) 	= IU(f,P ), then f(t) is not Delta integrable on [0, 1]T .

However applying the concept of Kurzwiel integral, we can refine the par-
tition P into an over lapping interval as

P = 0 = x0 ≤ α1 ≤ x1 ≤ α2 ≤ ... ≤ xi−1 ≤ αi ≤ xi = 1.

Let (α,P ) = (αi, [ti−1, ti]) be a tag such that αi =
1
2 (ti + ti−1) ∈ [ti−1, ti] and

[ti−1, ti] ⊂ (αi − ε

2i+1
, αi +

ε

2i+1
,

if the tis
′ are the rationales, the gauge δ(αi) = ε

2i+1 . and if tis
′ are irra-

tionals(in between the rationales) the gauge δ(αi) = 1. There can only be two
subintervals with αi as tag and the length of this subintervals is ε

2i
. Hence,

the contribution to the Kurzweil sum (S(f, P )), over the partition P , from
subintervals with αi as tag is ε

2i
and the contribution of the tags at irrational

points to the Kurzweil sum (S(f, P )), over P, is 0. Then

0 ≤ S(f, P ) ≤
∞∑
i=0

ε

2i
= ε.

Since ε is arbitrary, we therefore conclude that f(t) is Kurzweil integrable on
[0, 1]T and ∫ 1

0
f(t)dg(t) = 0.
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Example 4.2. Consider the function f : T → R defined by

f(t) =

{
1, if − 1 ≤ t < 0,

−1 if 0 ≤ t ≤ 1,

on [−1, 1]T ⊂ T . We define the partition P = {−1 = t0 < t1 < ... < tn = 1},
such that the Riemann Sums of the Upper and lower Delta integral are

UΔ(P, f) =

n∑
i=1

MΔt =

n∑
i=1

(xi − xi−1) . 1 = 1

and

L(P, f) =
n∑

i=1

mΔt =
n∑

i=1

(xi − xi−1) . (−1) = −1,

respectively.
Also the Upper and lower Delta integrals are

IUΔ(P,f) =

∫ 1

−1
f(t)Δt = inf(UΔ(P, f)) = 1

and

IL(P,f) =

∫ 1

−1
f(t)Δt = sup(LΔ(P, f)) = −1,

respectively.
Since IUΔ(P,f) 	= IL(P,f), then f(t) is not Delta integrable on [−1, 1]T .

Defining a δ-fine partition on P such that

P = {−1 = t0 ≤ α1 ≤ t1 ≤ α2 ≤ ... ≤ αn ≤ tn = 1},
such that P = {−1,− ε

2 ,
ε
2 , 1}, and choosing αi =

1
2(ti + ti−1) ∈ [ti−1, ti] for

i = 1, 2, ...n, we have

S(f, P ) =

n∑
i=1

f(αi)(ti − ti−1)

=
n∑

i=1

1

2
(ti + ti−1)(ti − ti−1)

=
1

2

n∑
i=1

(t2n − t20)

=
1

2

((
(− ε

2
)2 − (−1)2

)
+

(
(
ε

2
)2 − (− ε

2
)2
)
+

(
(1)2 − (

ε

2
)2
))

= 0.

And so f(t) is Kurzweil integrable on [−1, 1]T .
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5. Conclusion

The setback of non-absolutely convergent integral of some functions of
the dynamic equations on time scale, which makes the everywhere existence
of fΔ(t) very restrictive, and so the loss of the uniqueness of the indefinite
integral was addressed by the use of Kurzweil integral. Theorems on the
existence and uniqueness of solution of dynamic equations were formulated
and proved via the generalized ordinary differential equation. Examples were
used for illustration, and the results obtained confirmed the suitability of the
approach.
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