THE HYPERBOLIC FUNCTION METHOD FOR
THE FRACTIONAL (3+1)-DIMENSIONAL GENERALIZED
KORTEWEG-DE-VEIES-ZAKHAROV-KUZNETSOV EQUATION
IN PLASMA PHYSICS
Montri Torvattanabun1, Jakkrit Boonprasop2,
Aphinan Phunphon3, Siwarak Promraksa1 1 Department of Mathematics
Faculty of Science and Technology
Loei Rajabhat University
Loei-42000, THAILAND 2 Wang Sam Mo Branch
Muangthai Capital Public Company
Udon-Thani 41280, THAILAND 3 Department of Mathematics
Ban Nong Ya Rang Ka School
Udon-Thani 41280, THAILAND
The fractional (3+1)-dimensional generalized Korteweg–de-Vries– Zakharov–Kuznetsov equation (gKdV-ZKe) is one of the nonlinear models to indicate the impact of magnetic fields on weak ion-acoustic wave in plasma comprised of cool and hot electrons. We have applied the hyperbolic function method to explore the diversity of wave structures. We extract the solitons in form of bright solitons, dark solitons, bright-dark combo solitons and other solitons. Moreover, for the physical illustration, some of the obtained solutions are represented graphically.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] V. Adukov, G. Mishuris, Utilization of the ExactMPF package for solving a
discrete analogue of the nonlinear Schrödinger equation by the inverse scattering transform method, Proc. R. Soc. A, 479, No 2269 (2023), 20220144.
[2] S. Malik, S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, M. S. Osman, Application of new Kudryashov method to various nonlinear partial
diferential equations, Optical and Quantum Electronics, 55, No 8 (2023),
13 pp.
[3] S. Mohanty, O. Kravchenko, M. Deka, A. Dev, D. Churikov, The exact
solutions of the (2+1)–dimensional Kadomtsev–Petviashvili equation with
variable coefficients by extended generalized (G′ /G) expansion method, J.
King Saud Uni. – Sci., 35 (2023), 102358.
[4] S. Ganainia, S. Kumarb, Symbolic computation to construct new soliton
solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the
new improved modified generalized sub-ODE proposed method, Math. and
Comput. Simul., 208 (2023), 28-56.
[5] M. Ahmed, A. Zaghrout, H. Ahmed, Exploration new solitons in fiber
Bragg gratings with cubic–quartic dispersive reflectivity using improved
modified extended tanh-function method, Eur. Phys. J. Plus, 138, No 32
(2023).
[6] G. Akram, M. Sadaf, M. Khan, Soliton solutions of the resonant nonlinear
Schrödinger equation using modified auxiliary equation method with three
different nonlinearities, Math. and Comput. Simul., 206 (2023), 1-10.
[7] A. Sarwar, T. Gang, M. Arshad, I. Ahmed, M. Ahmad, Abundant solitary
wave solutions for space-time fractional unstable nonlinear Schrödinger
equations and their applications, AIN Shams Eng. J., 14 (2023), 101839.
[8] H. Deng, G. Liu, L. Zhou, Ultrasonic logging image denoising algorithm
based on variational Bayesian and sparse prior, J. Elec. Imag., 32, No 1
(2023), 1-14.
[9] M. Ghayad, N. Badra, H. Ahmed, W. Rabie, Derivation of optical solitons
and other solutions for nonlinear Schro¨dinger equation using modified
extended direct algebraic method, Alexandria Eng. J., 64 (2023), 801-811.
[10] N. Raza, A. Jhangeer, R. Rahman, A. Rashid, Y. Chu, Sensitive visualization of the fractional wazwaz-benjamin-bona-mahony equation with fractional derivatives: A comparative analysis, Results in Physics, 25 (2021),
104171.
[11] H. Rehman, A. Seadawy, M. Younis, S. Rizvi, I. Anwar, M. Baber, A. Althobaiti, Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg-de-Vries-ZakharovKuznetsov equation in plasma physics, Results in Physics, 33 (2022),
105069.
[12] G. Ozkan, B. Ahmet, C. Adem, Dark soliton and periodic wave solutions
of nonlinear evolution equations, Adv. Differ. Eq., 68 (2013), 12 pp.
[13] C. Khalique, O. Adeyemo, A study of (3+1)-dimensional generalized
Korteweg-de Vries-Zakharov-Kuznetsov equation via Lie symmetry approach, Results in Physics, 18 (2020), 103197.
[14] R. Nauman, S. Alyr, K. Melike, B. AsmaRashid, Symbolic computation
and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with
applications, Phys. Scr., 96 (2021), 105216.
[15] F. Verheest, R. Mace, S. Pillay, M. Hellberg, Unified derivation of Korteweg–de Vries– Zakharov–Kuznetsov equations in multispecies plasmas,
J. Phys. A Math. Gen., 35 (2002), 795-806.
[16] K. Hosseini, A. Zabihi, F. Samadani, R. Ansari, New explicit exact solutions of the unstable nonlinear Schro¨dinger’s equation using the expa and
hyperbolic function methods, Optical and Quantum Electronics, 50, No 82
(2018), 8 pp.
[17] A. Seadawy, D. Kumar, K. Hosseini, F. Samadani, The system of equations
for the ion sound and Langmuir waves and its new exact solutions, Results
in Physics, 9 (2018), 1631–1634.
[18] K. Hosseini, R. Ansari, A. Zabihi, A. Shafaroody, M. Mirzazadeh, Optical
solitons and modulation instability of the resonant nonlinear Schrödinger
equations in (3+1)-dimensions, Optik , 209 (2018), 164584.
[19] A. Zafar, A. Bekir, M. Raheel, H. Rezazadeh, Investigation for optical
soliton solutions of two nonlinear Schrödinger equations via two concrete
finite series methods, Int. J. Appl. Comput. Math., 6, No 65 (2020), 1-13.
[20] A. Scott, Encyclopedia of Nonlinear Science, Taylor & Francis, New York
(2005).