THE HYPERBOLIC FUNCTION METHOD FOR
THE FRACTIONAL (3+1)-DIMENSIONAL GENERALIZED
KORTEWEG-DE-VEIES-ZAKHAROV-KUZNETSOV EQUATION
IN PLASMA PHYSICS

Abstract

The fractional (3+1)-dimensional generalized Korteweg–de-Vries– Zakharov–Kuznetsov equation (gKdV-ZKe) is one of the nonlinear models to indicate the impact of magnetic fields on weak ion-acoustic wave in plasma comprised of cool and hot electrons. We have applied the hyperbolic function method to explore the diversity of wave structures. We extract the solitons in form of bright solitons, dark solitons, bright-dark combo solitons and other solitons. Moreover, for the physical illustration, some of the obtained solutions are represented graphically.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 5
Year: 2023

DOI: 10.12732/ijam.v36i5.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] V. Adukov, G. Mishuris, Utilization of the ExactMPF package for solving a discrete analogue of the nonlinear Schrödinger equation by the inverse scattering transform method, Proc. R. Soc. A, 479, No 2269 (2023), 20220144.
  2. [2] S. Malik, S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, M. S. Osman, Application of new Kudryashov method to various nonlinear partial diferential equations, Optical and Quantum Electronics, 55, No 8 (2023), 13 pp.
  3. [3] S. Mohanty, O. Kravchenko, M. Deka, A. Dev, D. Churikov, The exact solutions of the (2+1)–dimensional Kadomtsev–Petviashvili equation with variable coefficients by extended generalized (G′ /G) expansion method, J. King Saud Uni. – Sci., 35 (2023), 102358.
  4. [4] S. Ganainia, S. Kumarb, Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new improved modified generalized sub-ODE proposed method, Math. and Comput. Simul., 208 (2023), 28-56.
  5. [5] M. Ahmed, A. Zaghrout, H. Ahmed, Exploration new solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity using improved modified extended tanh-function method, Eur. Phys. J. Plus, 138, No 32 (2023).
  6. [6] G. Akram, M. Sadaf, M. Khan, Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities, Math. and Comput. Simul., 206 (2023), 1-10.
  7. [7] A. Sarwar, T. Gang, M. Arshad, I. Ahmed, M. Ahmad, Abundant solitary wave solutions for space-time fractional unstable nonlinear Schrödinger equations and their applications, AIN Shams Eng. J., 14 (2023), 101839.
  8. [8] H. Deng, G. Liu, L. Zhou, Ultrasonic logging image denoising algorithm based on variational Bayesian and sparse prior, J. Elec. Imag., 32, No 1 (2023), 1-14.
  9. [9] M. Ghayad, N. Badra, H. Ahmed, W. Rabie, Derivation of optical solitons and other solutions for nonlinear Schro¨dinger equation using modified extended direct algebraic method, Alexandria Eng. J., 64 (2023), 801-811.
  10. [10] N. Raza, A. Jhangeer, R. Rahman, A. Rashid, Y. Chu, Sensitive visualization of the fractional wazwaz-benjamin-bona-mahony equation with fractional derivatives: A comparative analysis, Results in Physics, 25 (2021), 104171.
  11. [11] H. Rehman, A. Seadawy, M. Younis, S. Rizvi, I. Anwar, M. Baber, A. Althobaiti, Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg-de-Vries-ZakharovKuznetsov equation in plasma physics, Results in Physics, 33 (2022), 105069.
  12. [12] G. Ozkan, B. Ahmet, C. Adem, Dark soliton and periodic wave solutions of nonlinear evolution equations, Adv. Differ. Eq., 68 (2013), 12 pp.
  13. [13] C. Khalique, O. Adeyemo, A study of (3+1)-dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation via Lie symmetry approach, Results in Physics, 18 (2020), 103197.
  14. [14] R. Nauman, S. Alyr, K. Melike, B. AsmaRashid, Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications, Phys. Scr., 96 (2021), 105216.
  15. [15] F. Verheest, R. Mace, S. Pillay, M. Hellberg, Unified derivation of Korteweg–de Vries– Zakharov–Kuznetsov equations in multispecies plasmas, J. Phys. A Math. Gen., 35 (2002), 795-806.
  16. [16] K. Hosseini, A. Zabihi, F. Samadani, R. Ansari, New explicit exact solutions of the unstable nonlinear Schro¨dinger’s equation using the expa and hyperbolic function methods, Optical and Quantum Electronics, 50, No 82 (2018), 8 pp.
  17. [17] A. Seadawy, D. Kumar, K. Hosseini, F. Samadani, The system of equations for the ion sound and Langmuir waves and its new exact solutions, Results in Physics, 9 (2018), 1631–1634.
  18. [18] K. Hosseini, R. Ansari, A. Zabihi, A. Shafaroody, M. Mirzazadeh, Optical solitons and modulation instability of the resonant nonlinear Schrödinger equations in (3+1)-dimensions, Optik , 209 (2018), 164584.
  19. [19] A. Zafar, A. Bekir, M. Raheel, H. Rezazadeh, Investigation for optical soliton solutions of two nonlinear Schrödinger equations via two concrete finite series methods, Int. J. Appl. Comput. Math., 6, No 65 (2020), 1-13.
  20. [20] A. Scott, Encyclopedia of Nonlinear Science, Taylor & Francis, New York (2005).