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Abstract: This work is devoted to the study of the methods of solving the
boundary value problem with transformed arguments. In the studied problems,
the arguments are transformed by mapping the type of involution. Moreover,
these mappings are used both in the equation and in the boundary conditions.
The equation under consideration is a nonlocal analogue of the Poisson equa-
tion. The boundary conditions are specified as a relation between the value of
the desired function in the upper semicircle and its value in the lower semi-
circle. Two types of boundary conditions are considered. They generalize the
known periodic and antiperiodic conditions for circular regions. When solving
the main problems for the classical Poisson equation, auxiliary problems are
obtained. Using well-known assertions for these auxiliary problems, theorems
on the existence and uniqueness of solutions are proved. Exact conditions for
the solvability of the studied problems are found.
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1. Introduction

Let Ω =
{

x ∈ R2 : |x| = 1
}

be a unit circle, ∂Ω - a circumference. Let us in-
troduce the notation ∂Ω+ = {x ∈ ∂Ω : x1 ≥ 0} , ∂Ω− = {x ∈ ∂Ω : x1 ≤ 0} , I =
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{x ∈ ∂Ω : x1 = 0} .
For any x = (x1, x2) ∈ R2 consider the mappings:

S1x = (−x1, x2), S2x = (x1,−x2), S3x = (−x1,−x2).

It is obvious that S2
jx = x, S1S2 = S2S1 ≡ S3, S1S3 = S3S1 ≡ S2, S2S3 =

S3S2 ≡ S1.

Let a0, a1, a2, a3 be some real numbers. We introduce the operator

Lu(x) ≡ −a0∆u(x)− a1∆u(S1x)− a2∆u(S2x)− a3∆u(S3x).

Denote x∗ = Sjx, where j takes one of the values j = 1 or j = 3.

Consider the following problem in the domain Ω:

Problem P. Find the function u(x) ∈ C2 (Ω) ∪ C1
(

Ω̄
)

satisfying the con-
ditions

Lu(x) = f(x), x ∈ Ω, (1)

u(x) + (−1)ku(x∗) = g0(x), x ∈ ∂Ω+, (2)

∂u(x)

∂ν
− (−1)k

∂u(x∗)

∂ν
= g1(x), x ∈ ∂Ω+, (3)

where k = 1 or k = 2, g0(x) and g1(x) are given functions.
Note that if x ∈ I, then the point x∗ also belongs to the set I. Therefore,

the boundary conditions (2) and (3) imply the following matching conditions
for x ∈ I

g0(x) = (−1)kg0(x
∗),

∂g0(x)

∂xj
= (−1)k

∂g0(x
∗)

∂xj
, k, j = 1, 2, x ∈ I, (4)

g0(x) = (−1)kg0(x
∗), k = 1, 2, x ∈ I. (5)

Further, we will consider these conditions to be satisfied.
Boundary value problems with involutively transformed arguments for the

Laplace equation were first studied in [9]. In this paper, generalizations of
Dirichlet, Neumann, and Robin boundary value problems were studied in the
two-dimensional case. Problems P in the case of the classical Poisson equa-
tion, i.e. when a0 = 1 and aj = 0, j = 1, 2, 3 were studied in [13],[14]. Later,
some generalizations of these problems with conditions of the Dirichlet, Neu-
mann, and Robin types, as well as of the Samarskii-Ionkin type, were studied
in [6],[7],[10],[11],[15],[19]. Further, in [3],[4] for a nonlocal Laplace operator
with involutively transformed arguments in rectangular domains, problems of
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the Cauchy and Dirichlet types were studied. In a more general case, the
main boundary value problems for nonlocal analogues of the Poisson equa-
tion and spectral questions for the nonlocal Laplace operator were studied in
[1],[5],[8],[16],[18].

2. Problem P for the case k = 1

Let k = 1. Consider the function

v(x) = a0u(x) + a1u(S1x) + a2u(S2x) + a3u(S3x). (6)

Replacing the point x by Sjx, j = 1, 2, 3 in equality (6), we obtain

v(S1x) = a1u(x) + a0u(S1x) + a3u(S2x) + a2u(S3x), (7)

v(S2x) = a2u(x) + a3u(S1x) + a0u(S2x) + a1u(S3x), (8)

v(S3x) = a3u(x) + a2u(S1x) + a1u(S2x) + a0u(S3x). (9)

From equation (1) for the function v(x) we obtain −∆v(x) = f(x), x ∈ Ω.
Note that if x ∈ ∂Ω+, then S1x, S3x ∈ ∂Ω− and S2x ∈ ∂Ω+. Therefore
if x∗ = S1x, then from condition (2) for points y = S2x ∈ ∂Ω+ and y∗ =
S1 (S2x) = S3x ∈ ∂Ω− we get

u(y)− u (y∗) = g0 (y
∗) ⇔ u(S2x)− u (S1 (S2x)) = g0 (S2x) , x ∈ ∂Ω+.

And if x∗ = S3x, then for points y = S2x ∈ ∂Ω+ and y∗ = S2 (S1x) =
S3x ∈ ∂Ω− we get

u(y)− u (y∗) = g0 (y
∗) ⇔ u(S2x)− u (S2 (S1x)) = g0 (S2x) , x ∈ ∂Ω+.

Thus, if x ∈ ∂Ω+, then

u(x)− u(S1x) + u(S2x)− u(S3x) = g0(x) + g0(S2x), x ∈ ∂Ω+.

In a similar way, it can be shown that condition (3) implies

∂u(x)

∂ν
+

∂u(S1x)

∂ν
+

∂u(S2x)

∂ν
+

∂u(S3x)

∂ν
= g1(x) + g2(S1x), x ∈ ∂Ω+.

Hence, for the function v(x) for x ∈ ∂Ω+ we obtain

v(x) − v(S1x) = a0u(x) + a1u(S1x) + a2u(S2x) + a3u(S3x)
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−a1u(x)− a0u(S1x)− a3u(S2x)− a2u(S3x)

= (a0 − a1) [u(x)− u(S1x)] + (a2 − a3) [u(S2x)− u(S3x)]

= (a0 − a1) g0(x) + (a2 − a3) g0(S2x),

∂v(x)

∂ν
+

∂v(S1x)

∂ν
= (a0 + a1)g1(x) + (a2 + a3)g1(S2x), x ∈ ∂Ω+.

Thus, if u(x) is a solution to problem (1), then the function v(x) satisfies
the conditions of the following problem

−∆v(x) = f(x), x ∈ Ω, (10)

v(x)− v(S1x) = h0(x), x ∈ ∂Ω+, (11)

∂v(x)

∂ν
+

∂v(Sx)

∂ν
= h1(x), x ∈ ∂Ω+, (12)

where

h0(x) = (a0 − a1) g0(x) + (a2 − a3) g0(S2x),

h1(x) = (a0 + a1) g1(x) + (a2 + a3) g1(S2x). (13)

Let GD(x, y) and GN (x, y) be Green’s functions of the classical Dirichlet
and Neumann problems for the Poisson equation. Note that in the case of a
ball, the explicit form of the function GD(x, y) is given in textbooks on the
equations of mathematical physics (see, for example,[2], p.40), and the function
GN (x, y) was constructed in [12],[17].

The following assertion was proved in [13].

Lemma 1. If f(x) ∈ Cδ
(

Ω̄
)

, h0(x) ∈ C1+δ (∂Ω+) and h1(x) ∈ Cδ (∂Ω+),
0 < δ < 1 and for functions h0(x) and h1(x) the matching conditions of type

(4),(6) are satisfied, then the solution of problem (10)-(12) exists, is unique and
is represented in the form

v(x) =

∫

Ω

G1(x, y)f(y)dy −

∫

∂Ω+

∂G1(x, y)

∂νy
h0(y)dSy

+

∫

∂Ω+

G1(x, y)h1(y)dSy, (14)

where

G1(x, y) =
GD(x, y) +GD (x, y∗) +GN (x, y)−GN (x, y∗)

2
.
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Further, we use the notation

V = (v(x), v(S1x), v(S2x), v(S3x))
T ,

U = (u(x), u(S1x), u(S2x), u(S3x))
T .

Then system (6)-(9) can be represented in the matrix form

V = AU,

where matrix A is written as

A =









a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0









.

Eigenvectors of matrix A have the form

M1 = (1, 1, 1, 1)T ,M2 = (1, 1,−1,−1)T ,

M3 = (1,−1, 1,−1)T ,M4 = (1,−1,−1, 1)T ,

and their corresponding eigenvalues are represented as

ε1 = a0 + a1 + a2 + a3, ε1 = a0 + a1 − a2 − a3,

ε3 = a0 − a1 + a2 − a3, ε4 = a0 − a1 − a2 + a3.

The determinant of matrix A is calculated by the formula

|A| = ε1 · ε2 · ε3 · ε4.

Hence, if εj 6= 0, j = 1, 2, 3, 4, then the matrix A is invertible. The structure
of the inverse matrix B = A−1 will be the same as that of the matrix A (see,
for example, [5]), i.e. it has the form

B =









b0 b1 b2 b3
b1 b0 b3 b2
b2 b3 b0 b1
b3 b2 b1 b0









.

Let us formulate the main statement for Problem P in the case k = 1.
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Theorem 2. Let k = 1, coefficients aj 6= 0, j = 0, 1, 2, 3 are such that

the conditions εj 6= 0, j = 1, 2, 3, 4 are satisfied. If f(x) ∈ Cδ
(

Ω̄
)

, g0(x) ∈
C1+δ (∂Ω+) and g1(x) ∈ Cδ (∂Ω+) , 0 < δ < 1, then a solution to Problem P

exists, is unique, and can be represented as

u(x) =

∫

Ω

GP1
(x, y)f(y)dy

−

∫

∂Ω+

[

(a0 − a1)
∂GP1

(x, y)

∂νy
+ (a2 − a3)

∂GP1
(x, S2y)

∂νy

]

g0(y)dSy

+

∫

∂Ω+

[(a0 + a1)GP1
(x, y) + (a2 + a3)GP1

(x, S2y)] g1(y)dSy, (15)

where GP1
(x, y) is the Green’s function of Problem P, which is defined by the

equality

GP1
(x, y) = b0G1(x, y) + b1G1(S1x, y) + b2G1(S2x, y) + b3G1(S3x, y).

Proof. Let the function v(x) be a solution to problem (10)-(12) with func-
tions h0(x) and h1(x) from equality (13). Consider the function

u(x) = b0v(x) + b1v(S1x) + b2v(S2x) + b3v(S3x). (16)

Let us show that this function satisfies all the conditions of Problem P.
Indeed, applying the operator −∆ to function (16), we obtain

−∆u(x) = b0f(x) + b1f(S1x) + b2f(S2x) + b3f(S3x),

−∆u(S1x) = b1f(x) + b0f(S1x) + b3f(S2x) + b2f(S3x),

−∆u(S2x) = b2f(x) + b3f(S1x) + b0f(S2x) + b1f(S3x),

−∆u(S3x) = b3f(x) + b2f(S1x) + b1f(S2x) + b0f(S3x).

Hence, taking into account that AB = E we get

Lu(x) = a0 [b0f(x) + b1f(S1x) + b2f(S2x) + b3f(S3x)]

+a1 [b0f(S1x) + b1f(x) + b2f(S3x) + b3f(S2x)]

+a2 [b0f(S2x) + b1f(S3x) + b2f(x) + b3f(S1x)]

+a3 [b0f(S3x) + b1f(S2x) + b2f(S1x) + b3f(x)]
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= (a0b0 + a1b1 + a2b2 + a3b3) f(x)

+ (a0b1 + a1b0 + a2b3 + a3b2) f(S1x)

+ (a0b2 + a1b3 + a2b0 + a3b1) f(S2x)

+ (a0b3 + a1b2 + a2b1 + a3b0) f(S3x) = f(x).

Let us check the fulfillment of the boundary conditions in the case x∗ = S1x.

If x ∈ ∂Ω+, we get

u(x)− u(x∗) = b0v(x) + b1v(S1x) + b2v(S2x) + b3v(S3x)

−b0v(x
∗)− b1v(S1x

∗)− b2v(S2x
∗)− b3v(S3x

∗)

= b0 [v(x)− v(x∗)] + b1 [v(S1x)− v(S1x
∗)]

+b2 [v(S2x)− v(S2x
∗)] + b3 [v(S3x)− v(S3x

∗)]

= b0 [v(x)− v(x∗)]− b1 [v(x)− v(S1x)]

+b2 [v(S2x)− v(S3x)]− b3 [v(S2x)− v(S3x)]

= (b0 − b1)h0(x) + (b2 − b3) h0(S2x)

= (b0 − b1) [(a0 − a1) g0(x) + (a2 − a3) g0(S2x)]

+ (b2 − b3) [(a0 − a1) g0(S2x) + (a2 − a3) g0(x)]

= [a0b0 + a1b1 + a2b2 + a3b3]g0(x)− [a1b0 + a0b1 + a2b3 + a3b2]g0(x)

+ [a2b0 + a3b1 + a0b2 + a1b3] g0(S2x)

− [a2b1 + a3b0 + a1b2 + a0b3] g0(S2x) = g0(x).

Similarly, we can show the fulfillment of the second boundary condition

∂u(x)

∂ν
+

∂u(x∗)

∂ν
=

∂

∂ν
[b0v(x) + b1v(S1x) + b2v(S2x) + b3v(S3x)]

−
∂

∂ν
[b0v(x

∗) + b1v(S1x
∗) + b2v(S2x

∗) + b3v(S3x
∗)] = g1(x).

The case when x∗ = S3x is checked in a similar way. Thus, the function
u(x) from (16) satisfies equation (1) and conditions (2) and (3). Further, using
the representation of the function v(x) from (14) we obtain representation (15)
for u(x). The theorem is proved.
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3. Problem P in the case k = 2

In the case k = 2 for Problem P the following assertion is valid.

Theorem 3. Let k = 2 and conditions εj 6= 0, j = 1, 2, 3, 4, f(x) ∈
Cδ

(

Ω̄
)

, g0(x) ∈ C1+δ (∂Ω+), g1(x) ∈ Cδ (∂Ω+) , 0 < δ < 1, are satisfied. Then,

for the existence of a solution to Problem P, it is necessary and sufficient that

the condition
∫

Ω

f(x)dx− γ

∫

∂Ω+

g1(x)dSx = 0, (17)

where γ = (a0−a1)+(a2−a3), be satisfied. If a solution to the problem exists,

then it is unique up to a constant term and is represented as

u(x) = Const+

∫

Ω

GP2
(x, y)f(y)dy

−

∫

∂Ω+

[

(a0 + a1)
∂GP2

(x, y)

∂νy
+ (a2 + a3)

∂GP2
(x, S2y)

∂νy

]

g0(y)dSy

+

∫

∂Ω+

[(a0 − a1)GP2
(x, y) + (a2 − a3)GP2

(x, S2y)] g1(y)dSy, (18)

where GP2
(x, y) is Green’s function of Problem P for the case k = 2, which is

defined by the equality

GP2
(x, y) = b0G2(x, y) + b1G2(S1x, y) + b2G2(S2x, y) + b3G2(S3x, y),

G2(x, y) =
GD(x, y)−GD (x, y∗) +GN (x, y) +GN (x, y∗)

2
+ Const.

Proof. Let k = 2 and a solution to Problem P exists. Let us denote this
solution u(x) and as in the case k = 1 introduce the function v(x) = a0u(x) +
a1u(S1x) + a2u(S2x) + a2u(S3x). In this case, for the function v(x) we get the
following problem

−∆v(x) = f(x), x ∈ Ω, (19)

v(x) + v(S1x) = h0(x), x ∈ ∂Ω+,

∂v(x)

∂ν
−

∂v(S1x)

∂ν
= h1(x), x ∈ ∂Ω+, (20)
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where

h0(x) = (a0 + a1) g0(x) + (a2 + a3) g0(S2x),

h1(x) = (a0 − a1) g1(x) + (a2 − a3) g2(S2x).

The following assertion was proved in [13].

Lemma 4. Let f(x) ∈ Cδ
(

Ω̄
)

, h0(x) ∈ C1+δ (∂Ω+), h1(x) ∈ Cδ (∂Ω+) , 0 <

δ < 1, and functions h0(x) and h1(x) satisfy matching conditions of type (4),(5).
Then, for existence of a solution to problem (19)-(20) it is necessary and suffi-

cient that the condition
∫

Ω

f(x)dx−

∫

∂Ω+

h1(x)dSx = 0. (21)

is satisfied. If a solution to the problem exists, it is unique up to a constant

term and is represented in the form

v(x) =

∫

Ω

G2(x, y)f(y)dy −

∫

∂Ω+

∂G2(x, y)

∂νy
h0(y)dSy

+

∫

∂Ω+

G2(x, y)h1(y)dSy, (22)

where

G2(x, y) =
GD(x, y)−GD (x, y∗) +GN (x, y) +GN (x, y∗)

2
+ Const.

Thus, if a solution to Problem P exists, then condition (21) must be satisfied.
Taking into account the representations of functions h1(x) for the integral over
the hemisphere ∂Ω+, we get

∫

∂Ω+

h1(x)dSx = (a0 − a1)

∫

∂Ω+

g1(x)dSx + (a2 − a3)

∫

∂Ω+

g2(S2x)dSx

= (a0 − a1)

∫

∂Ω+

g1(x)dSx + (a2 − a3)

∫

∂Ω+

g1(S2x)dSx

= [(a0 − a1) + (a2 − a3)]

∫

∂Ω+

g1(x)dSx.
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Hence, condition (21) can be rewritten in the form (17). The converse
statement is also valid, namely, if condition (17) is satisfied for the functions
f(x) and g1(x), then condition (21) is obviously satisfied for the functions f(x)
and h1(x) = (a0 − a1) g1(x) + (a2 − a3) g1(S2x). If condition (21) is fulfilled,
the solution to problem (19) - (20) exists and is represented in the form (22).
Substituting the value of the function v(x) into the right side of equality (16),
as in the case k = 1, we can show that the resulting function u(x) satisfies
all the conditions of Problem P. Finally, if we use equality (22), we obtain
representation (18) for the function u(x). The theorem is proved.
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