APPLICATIONS OF FUZZY SETS FOR
ALMOSTITY OF TERNARY SUBSEMIRINGS
Napaporn Sarasit1, Ronnason Chinram2,
Amornrat Rattana2 1 Division of Mathematics, Faculty of Engineering
Rajamangala University of Technology Isan Khon Kaen Campus
Khon Kaen - 40000, THAILAND 2 Division of Computational Science, Faculty of Science
Prince of Songkla University
Hat Yai, Songkhla - 90110, THAILAND
In this paper, we introduce almost ternary subsemirings of ternary semirings. We also investigate the properties of the union and the intersection of two almost ternary subsemirings. Moreover, we apply the fuzzy sets to study the fuzzifications of almost ternary subsemirings and provide the relationships among almost ternary subsemirings and their fuzzifications.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] S. Bashir, R. Mazhar, H. Abbas, M. Shabir, Regular ternary semirings in
terms of bipolar fuzzy ideals, Comput. Applied Math., 39, No 4 (2020),
319.
[2] R. Chinram, S. Kaewchay, A. Iampan, P. Singavananda, Characterization
of almost ternary subsemigroups and their fuzzifications, J. Math. Comput.
Sci., 27 (2022), 97–104.
[3] R. Chinram, S. Malee, L-Fuzzy ternary subsemirings and L-Fuzzy ideals
in ternary semirings, IAENG Int. J. Applied Math., 40, No 3 (2010), Art.
03.
[4] V.R. Daddi, Y.S. Pawar, Generalized semi-ideals in ternary semirings, Novi
Sad J. Math., 41, No 2 (2011), 81–87.
[5] M.K. Dubey, Anuradha, A note on prime quasi-ideals in ternary semirings,
Kragujevac J. Math., 37, No 2 (2013), 361–367.
[6] T. K. Dutta, S. Kar, A note on regular ternary semirings, Kyungpook Math.
J., 46 (2006), 357–365.
[7] B. Elavarasan, K. Porselvi, Prime bi-ideals in ordered ternary semirings,
Int. J. Math. Comput. Sci., 14, No 4 (2019), 929–933.
[8] A. Iampan, R. Chinram, P. Petchkaew, A note on almost subsemigroups
of semigroups, Int. J. Math. Comput. Sci., 16, No 4 (2021), 1623–1629.
[9] E. Kanser, An extension of the group concept, Bull. Amer. Math. Soc., 10
(1904), 290–291.
[10] S. Kar, On quasi-ideals and Bi-ideals in ternary semirings, Int. J. Math.
Math. Sci., 18 (2005), 3015–3023.
[11] S. Kar, A. Shikari, Soft Ternary Semirings, Fuzzy Inform. Engineering, 8,
No 1 (2016), 1–15.
[12] J. Kavikumar, A.B. Khamis, Fuzzy ideals and fuzzy quasi-ideals in ternary
semirings, IAENG Int. J. Applied Math., 37, No 2 (2007), Art. 06.
[13] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets
Syst., 5, No 2 (1981), 203–215.
[14] D.H. Lehmer, A ternary analogue of Abelian groups, Amer. J. Math., 54
(1932), 329–338.
[16] S. Malee, R. Chinram, k-Fuzzy ideals of ternary semirings, Int. J. Comput.
Math. Sci., 4, No 4 (2010), 206–210.
[17] G. Muhiuddin, J. Catherine Grace John, B. Elavarasan, K. Porselvi, D.
Al-Kadi, Properties of k-hybrid ideals in ternary semiring, J. Intel. Fuzzy
Syst., 42, No 6 (2022), 5799–5807.
[18] E.H. Prufer, Theory of abelian Groups-I, Maths. Z., 20 (1924), 165–187.
[19] D.M. Rao, G.S. Rao, A study on ternary semirings, Int. J. Math. Archive.,
5, No 12 (2014), 24–30.
[20] R. Rittichuai, A. Iampan, R. Chinram, P. Singavananda, Almost subsemir-
ings and fuzzifications, Int. J. Math. Comput. Sci., 17, No 4 (2022), 1491–
1497.
[21] A. Rosenfeld, Fuzzy groups. J. Math. Anal. Appl., 35 (1971), 512–517.
[22] P. Yiarayong, On weakly completely quasi primary and completely quasi
primary ideals in ternary semirings, Commun. Korean Math. Soc., 31, No
4 (2016), 657–665.