APPLICATIONS OF FUZZY SETS FOR
ALMOSTITY OF TERNARY SUBSEMIRINGS

Abstract

In this paper, we introduce almost ternary subsemirings of ternary semirings. We also investigate the properties of the union and the intersection of two almost ternary subsemirings. Moreover, we apply the fuzzy sets to study the fuzzifications of almost ternary subsemirings and provide the relationships among almost ternary subsemirings and their fuzzifications.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 4
Year: 2023

DOI: 10.12732/ijam.v36i4.5

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Bashir, R. Mazhar, H. Abbas, M. Shabir, Regular ternary semirings in terms of bipolar fuzzy ideals, Comput. Applied Math., 39, No 4 (2020), 319.
  2. [2] R. Chinram, S. Kaewchay, A. Iampan, P. Singavananda, Characterization of almost ternary subsemigroups and their fuzzifications, J. Math. Comput. Sci., 27 (2022), 97–104.
  3. [3] R. Chinram, S. Malee, L-Fuzzy ternary subsemirings and L-Fuzzy ideals in ternary semirings, IAENG Int. J. Applied Math., 40, No 3 (2010), Art. 03.
  4. [4] V.R. Daddi, Y.S. Pawar, Generalized semi-ideals in ternary semirings, Novi Sad J. Math., 41, No 2 (2011), 81–87.
  5. [5] M.K. Dubey, Anuradha, A note on prime quasi-ideals in ternary semirings, Kragujevac J. Math., 37, No 2 (2013), 361–367.
  6. [6] T. K. Dutta, S. Kar, A note on regular ternary semirings, Kyungpook Math. J., 46 (2006), 357–365.
  7. [7] B. Elavarasan, K. Porselvi, Prime bi-ideals in ordered ternary semirings, Int. J. Math. Comput. Sci., 14, No 4 (2019), 929–933.
  8. [8] A. Iampan, R. Chinram, P. Petchkaew, A note on almost subsemigroups of semigroups, Int. J. Math. Comput. Sci., 16, No 4 (2021), 1623–1629.
  9. [9] E. Kanser, An extension of the group concept, Bull. Amer. Math. Soc., 10 (1904), 290–291.
  10. [10] S. Kar, On quasi-ideals and Bi-ideals in ternary semirings, Int. J. Math. Math. Sci., 18 (2005), 3015–3023.
  11. [11] S. Kar, A. Shikari, Soft Ternary Semirings, Fuzzy Inform. Engineering, 8, No 1 (2016), 1–15.
  12. [12] J. Kavikumar, A.B. Khamis, Fuzzy ideals and fuzzy quasi-ideals in ternary semirings, IAENG Int. J. Applied Math., 37, No 2 (2007), Art. 06.
  13. [13] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets Syst., 5, No 2 (1981), 203–215.
  14. [14] D.H. Lehmer, A ternary analogue of Abelian groups, Amer. J. Math., 54 (1932), 329–338.
  15. [15] W.G. Lister, Ternary rings, Trans. Amer. Math. Soc., 154 (1971), 37–55.
  16. [16] S. Malee, R. Chinram, k-Fuzzy ideals of ternary semirings, Int. J. Comput. Math. Sci., 4, No 4 (2010), 206–210.
  17. [17] G. Muhiuddin, J. Catherine Grace John, B. Elavarasan, K. Porselvi, D. Al-Kadi, Properties of k-hybrid ideals in ternary semiring, J. Intel. Fuzzy Syst., 42, No 6 (2022), 5799–5807.
  18. [18] E.H. Prufer, Theory of abelian Groups-I, Maths. Z., 20 (1924), 165–187.
  19. [19] D.M. Rao, G.S. Rao, A study on ternary semirings, Int. J. Math. Archive., 5, No 12 (2014), 24–30.
  20. [20] R. Rittichuai, A. Iampan, R. Chinram, P. Singavananda, Almost subsemir- ings and fuzzifications, Int. J. Math. Comput. Sci., 17, No 4 (2022), 1491– 1497.
  21. [21] A. Rosenfeld, Fuzzy groups. J. Math. Anal. Appl., 35 (1971), 512–517.
  22. [22] P. Yiarayong, On weakly completely quasi primary and completely quasi primary ideals in ternary semirings, Commun. Korean Math. Soc., 31, No 4 (2016), 657–665.
  23. [23] L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.