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Abstract: Let B(X) be the algebra of all bounded linear operators on infinite-
dimensional complex Banach spaceX. For T ∈ B(X) and i ∈ {1, 2, 3}, let σi(T )
denote any one of the semi-Fredholm domain, the Fredholm domain and the
Weyl domain in the spectrum. We prove that if two maps ϕ1 and ϕ2 from
B(X) onto B(X) satisfy

σi(ϕ1(T )ϕ2(S)) = σi(TS)

for all T, S ∈ B(X), then either:
(1) there is a bounded linear operator A : X → X such that ϕ1(T ) = AT (ϕ2(I)A)

−1

and ϕ2(T ) = ϕ2(I)ATA
−1 for all T ∈ B(X), or

(2) there is a bounded linear operator A : X∗ → X such that ϕ1(T ) =
AT ∗(ϕ2(I)A)

−1 and ϕ2(T ) = ϕ2(I)AT
∗A−1 for all T ∈ B(X). Where I is

identity operator on X.
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1. Introduction and Background

Throughout this paper, X denotes infinite-dimensional complex Banach spaces,
and B(X) denotes the space of all bounded linear operators on X and its unit
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will be denoted by I. The dual space of X is denoted by X∗. For an operator
T ∈ B(X), the adjoint, the null space and the range of T are denoted by T ∗,
ker(T ) and R(T ), respectively. Recall that an operator T ∈ B(X) is called
upper (resp. lower) semi-Fredholm if R(T ) is closed and ker(T ) (resp. X

R(T ) )
is finite dimensional. The operator T is called semi-Fredholm if it is either
upper or lower semi-Fredholm and T is Fredholm if it is both upper and lower
semi-Fredholm. If T is a semi-Fredholm operator, then the index, ind(T ), is
defined by

ind(T ) = dim(kerT ) − codim(R(T )).

Obviously, any Fredholm operator has a finite index. An operator T ∈ B(X) is
called a Weyl operator, if it is Fredholm of index zero. The spectrum, the semi-
Fredholm domain, the Fredholm domain and the Weyl domain of T ∈ B(X)
are defined, respectively, by

σ(T ) = {λ ∈ C : T − λI is not invertible},

ρSF (T ) = {λ ∈ C : T − λI is a semi− Fredholm operator},

ρF (T ) = {λ ∈ C : T − λI is a Fredholm operator},

ρW (T ) = {λ ∈ C : T − λI is a Weyl operator}.

Clearly, ρW ⊆ ρF (T ) ⊆ ρSF (T ). The semi-Fredholm domain, the Fredholm
domain and the Weyl domain in the spectrum of T is defined by

σ1(T ) = {λ ∈ σ(T ) : T − λI is a semi− Fredholm operator},

σ2(T ) = {λ ∈ σ(T ) : T − λI is a Fredholm operator},

σ3(T ) = {λ ∈ σ(T ) : T − λI is a Weyl operator},

respectively. Obviously, σ1(T ) = σ(T )
⋂

ρSF (T ) and σ3(T ) ⊆ σ2(T ) ⊆ σ1(T ).
Several authors have studied the linear maps which preserve Fredholm or

semi-Fredholm operators (see [1, 3, 4]). Shi and Ji [6] combined the spectrum
with semi-Fredholm or Fredholm domain and described additive maps on B(X)
preserving the intersection of semi-Fredholm or Fredholm domain with the spec-
trum. In [2] Hajighasemi and Hejazian showed that if ϕ is a surjective map on
B(X) such that σi(ϕ(T )ϕ) = σi(TS) for all T, S ∈ B(X) then, up to a multiple
factor of ±1, the map ϕ is either an automorphism or an anti-automorphism.

For a vector x ∈ X and f ∈ X∗, let x ⊗ f stands for the operator of
rank at most one defined by (x ⊗ f)y = f(y)x for every y ∈ X. Note that,
(x⊗ f)∗ = f ⊗ x̂, where x̂ denotes the canonical image of x in X∗∗. We denote
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F1(X) the set of all rank-one operators on X and N1(X) be the set of nilpotent
operators in F1(X). It is clear that x⊗ f ∈ N1(X) if and only if f(x) = 0. We
denote by F (X) the set of all finite rank operators in B(X).

The first lemma is an elementary observation that gives the spectral do-
mains of any rank one operator.

Lemma 1. (See [2, Remark 1.1].) Let x ∈ X and f ∈ X∗. If i ∈ {1, 2, 3},
we have

σi(x⊗ f) :=

{

∅ if f(x) = 0,
{f(x)} if f(x) 6= 0.

The following result characterizes in term of the spectral domains when two
operators are the same.

Lemma 2. (See [2, Lemma 2.1].) Let T, S ∈ B(X) and i ∈ {1, 2, 3}. The
following statements are equivalent:
(1) T = S.
(2) σi(TR) = σi(SR) for all R ∈ B(X).
(2) σi(TR) = σi(SR) for all R ∈ F1(X)\N1(X).

The third lemma gives a spectral characterization of rank one operators in
term of the spectral domains σi(.).

Lemma 3. ([2, Lemma 2.2].) For i ∈ {1, 2, 3} and a nonzero operator
R ∈ B(X), the following statements are equivalent:
(a) R has rank one.
(b) σi(RT ) contains at most one element for all T ∈ B(X).
(c) σi(RT ) contains at most one element for every rank two operator T ∈ B(X).

2. Main Results

The following lemma is a useful observation needed to establish the linearity of
surjective maps preserving σi(.), i ∈ {1, 2, 3}.

Lemma 4. Let T, S ∈ B(X) and i ∈ {1, 2, 3}. For two vectors x, y ∈ X

and a linear functional f ∈ X∗, the following statements hold:
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(1) σi((x+ y)⊗ f) = σi(x⊗ f) + σi(y ⊗ f)
(2) σi((T + S)R) = σi(TR) + σi(SR) for all R ∈ F1(X).

Proof. First, suppose that f(x) 6= 0 and f(y) 6= 0. Therefore, by Lemma 1,

σi((x+ y)⊗ f) = {f(x+ y)} = {f(x)}+ {f(y)} = σi(x⊗ f) + σi(y ⊗ f).

Now, suppose that f(x) 6= 0 and f(y) = 0, then

σi((x+ y)⊗ f) = {f(x)} = σi(x⊗ f) + σi(y ⊗ f).

Similarly, if f(x) = 0 and f(y) 6= 0, then σi((x+y)⊗f) = σi(x⊗f)+σi(y⊗f).
Finally, if f(x) = 0 and f(y) = 0, then

σi((x+ y)⊗ f) = ∅ = σi(x⊗ f) + σi(y ⊗ f).

(2) Write R = x⊗ f . Then, by part (1),

σi((T + S)R) = σi((T + S)(x⊗ f)) = σi((Tx+ Sx)⊗ f)

= σi(Tx⊗ f) + σi(Sx⊗ f)

= σi(T (x⊗ f)) + σi(S(x⊗ f)) = σi(TR) + σi(SR).

The following theorem is the main result of this paper.

Theorem 5. Let ϕ1 and ϕ2 be maps from B(X) onto B(X) which satisfy

σi(ϕ1(T )ϕ2(S)) = σi(TS), (T, S ∈ B(X))

where, i ∈ {1, 2, 3}. Then either:
(1) there is a bounded linear operator A : X → X such that ϕ1(T ) = AT (ϕ2(I)A)

−1

and ϕ2(T ) = ϕ2(I)ATA
−1 for all T ∈ B(X), or

(2) there is a bounded linear operator A : X∗ → X such that ϕ1(T ) =
AT ∗(ϕ2(I)A)

−1 and ϕ2(T ) = ϕ2(I)AT
∗A−1 for all T ∈ B(X), where I is

identity operator on X.

Proof. The proof of it will be completed after checking several claims.

Claim 1. ϕ1 is injective and ϕ1(0) = 0.
If ϕ1(T ) = ϕ1(S) for some T, S ∈ B(X), we get that

σi(TR) = σi(ϕ1(T )ϕ2(R)) = σi(ϕ1(S)ϕ2(R)) = σi(SR)
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for all R ∈ F1(X). By Lemma 2, we see that T = S and ϕ1 is injective. For
the second part of this claim,

σi(ϕ1(0)ϕ2(T )) = σi(0T ) = ∅ = σi(0ϕ2(T ))

for all T ∈ B(X). Again by Lemma 2 and the surjectivity of ϕ2, we see that
ϕ1(0) = 0.

Claim 2. ϕ1 and ϕ2 preserve rank one operators in both directions.
Let R = x ⊗ f be a rank one operator where x ∈ X and f ∈ X∗. Note

that, ϕ1(R) 6= 0, since ϕ1(0) = 0 and ϕ1 is injective. Let T ∈ B(X) be an
arbitrary operator. By Lemma 3, σi(RT ) contains at most one element and
σi(ϕ1(R)ϕ2(T )) = σi(RT ) ⊆ {f(Tx)}. Since ϕ1 is surjective, we conclude that,
σi(ϕ1(R)S) has at most one element for every operator S = ϕ1(T ) ∈ B(X).
By Lemma 3, we see that ϕ1(R) has rank one. Conversely, assume that ϕ1(R)
is rank one for some operator R ∈ B(X), and note that R 6= 0 and that
σi(ϕ1(R)ϕ2(T )) has at most one element for all T ∈ B(X). Therefore, σi(RT )
has at most one element for all T ∈ B(X). Again Lemma 3 tells us that R is
rank one and thus ϕ1 preserves the rank one operators in both directions. It is
clear that, ϕ2 preserves rank one operators in both directions in a similar way.

Claim 3. ϕ1 is linear.
To establish the linearity of ϕ1, let us first show that ϕ1 is homogenous.

Let R be an arbitrary rank-one operator. For every α ∈ C and T ∈ B(X), we
have

σi(αϕ1(T )ϕ2(R)) = ασi(ϕ1(T )ϕ2(R))

= ασi(TR) = σi((αT )R) = σi(ϕ1(αT )ϕ2(R)).

Since ϕ2 is surjective and preserve rank one operators in both directions, Lemma
2 shows that ϕ1(αT ) = αϕ1(T ). Now, let us show that ϕ1 is additive. Let R

be an arbitrary rank-one operator and T, S ∈ B(X). By Lemma 4 and the
previous claim, we have

σi(ϕ1(T + S)ϕ2(R)) = σi((T + S)R) = σi(TR) + σi(SR)

= σi(ϕ1(T )ϕ2(R)) + σi(ϕ1(S)ϕ2(R))

= σi((ϕ1(T ) + ϕ2(S))R).

By Lemma 2, we deduce that ϕ1(T + S) = ϕ1(T ) + ϕ1(S) for all T, S ∈ B(X).

Claim 4. ϕ1 and ϕ1 have the desired forms.
By the previous claim ϕ1 : F (X) → F (X) is a bijective linear map which

preserves rank one operators in both directions. Thus by [5, Theorem 3.3], ϕ1
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has one of the following forms.
(1) There exist bijective linear maps A : X → X and B : X∗ → X∗ such that

ϕ1(x⊗ f) = Ax⊗Bf, x ∈ X, f ∈ X∗.

(2) There exist bijective linear maps A : X∗ → X and B : X → X∗ such that

ϕ1(x⊗ f) = Af ⊗Bx, x ∈ X, f ∈ X∗.

Assume that case (1) occurs. Let x ∈ X and f ∈ X∗ be arbitrary. Assume first
that f(x) 6= 0, using Lemma 1,

{0} 6= {f(x)} = σi(x⊗ f) = σi(ϕ1(x⊗ f)ϕ2(I)) = σi((Ax⊗Bf)ϕ2(I)),

which means that Bf(ϕ2(I)(Ax) 6= 0. Then Lemma 1 implies that

{f(x)} = σi(x⊗ f) = σi(ϕ1(x⊗ f)ϕ2(I)) = {(Bf)(ϕ2(I)Ax)}.

Now, if f(x) = 0, we choose a linear functional g ∈ X∗ such that g(x) 6= 0.
By what has been shown lastly applied to both g and f + g, we have

g(x) = (Bg)(ϕ2(I)Ax) and (f + g)(x) = (B(f + g))(ϕ2(I)Ax).

Then,

f(x) + g(x) = (f + g)(x) = (B(f + g))(ϕ2(I)Ax)

= (Bf)(ϕ2(I)Ax) + (Bg)(ϕ2(I)Ax)

= (Bf)(ϕ2(I)Ax) + g(x).

Therefore,

f(x) = (Bf)(ϕ2(I)Ax), (x ∈ X, f ∈ X∗), (⋆).

It is clear that ϕ2(I) is injective, if not, there is a nonzero vector y ∈ X

such that ϕ2(I)y = 0. Take x = A−1y, and let f ∈ X∗ be a linear func-
tional such that f(x) 6= 0. By (⋆), we have 0 6= f(x) = (Bf)(ϕ2(I)Ax) =
(Bf)(ϕ2(I)y) = 0. This contradiction tells us that ϕ2(I) is injective. Now, we
show that A is continuous. Assume that (xn)n is a sequence in X such that
limn−→∞ xn = x ∈ X and limn−→∞Axn = y ∈ X. Then, for every f ∈ X∗,
we have (Bf)(ϕ2(I)y) = limn−→∞(Bf)(ϕ2(I)Axn) = limn−→∞ f(xn) = f(x) =
(Bf)(ϕ2(I)Ax). Since B is bijective and f ∈ X∗ is an arbitrary linear func-
tional, the closed graph theorem shows that A is continuous. Moreover, we have
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f(x) = (Bf)(ϕ2(I)Ax) = (ϕ2(I)A)
∗Bf(x) for every x ∈ X and f ∈ X∗, and

thus IX∗ = (ϕ2(I)A)
∗B = A∗(ϕ2(I))

∗B. It follows that (A∗)−1B−1 = (ϕ2(I))
∗

and therefore ϕ2(I) is invertible and B∗ = (ϕ2(I)A)
−1. Hence, we have

ϕ1(x⊗ f) = Ax⊗Bf = A(x⊗ f)B∗ = A(x⊗ f)(ϕ2(I)
∗A)−1

for all x ∈ X and f ∈ X∗. Therefore, for every T ∈ B(X), we have

σi(A(x⊗ f)B∗ϕ2(T )) = σi(ϕ1(x⊗ f)ϕ2(T )) = σi((x⊗ f)T )

= σi(A(x⊗ f)B∗(B∗)−1TA−1),

for any x ∈ X and f ∈ X∗. By Lemma 2, we conclude that ϕ2(T ) =
(B∗)−1TA−1 = ϕ2(I)ATA

−1 for all T ∈ B(X). For the form of ϕ1, Observe
that

σi(AT (ϕ2(I)A)
−1ϕ2(S)) = σi(AT (ϕ2(I)A)

−1(ϕ2(I)A)SA
−1)

= σi(TS) = σi(ϕ1(T )ϕ2(S)),

for all T ∈ B(X). By Lemma 2, we have ϕ1(T ) = AT (ϕ2(I)A)
−1, for every

T ∈ B(H).
If case (2) occurs, similar to the proof of case (1), for all x ∈ X and f ∈ X∗

we obtain f(x) = (Bx)(ϕ2(I)Af). Also we have that A : X∗ → X, ϕ2(I) :
X → X and B : X → X∗ are invertible. Moreover, if J denotes the canonical
embedding of X in X∗∗, we have B∗Jϕ2(I)A = IX∗ and hence X is reflexive.
So for every x ∈ X and f ∈ X∗

ϕ1(x⊗ f) = Af ⊗Bx = A(f ⊗ x̂)B = A(f ⊗ x̂)(ϕ2(I)A)
−1.

Therefore, for every R ∈ F1(X), we see that ϕ1(R) = AR∗(ϕ2(I)A)
−1. By

a proof similar to the above, we get ϕ1(T ) = AT ∗(ϕ2(I)A)
−1 and ϕ2(T ) =

ϕ2(I)AT
∗A−1 for all T ∈ B(X).
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