

PRESERVER OF SOME SPECTRAL DOMAINS
OF PRODUCT OPERATORS

R. Parvinianzadeh

Department of Mathematics
University of Yasouj
Yasouj 75918, IRAN

Abstract: Let $B(X)$ be the algebra of all bounded linear operators on infinite-dimensional complex Banach space X . For $T \in B(X)$ and $i \in \{1, 2, 3\}$, let $\sigma_i(T)$ denote any one of the semi-Fredholm domain, the Fredholm domain and the Weyl domain in the spectrum. We prove that if two maps φ_1 and φ_2 from $B(X)$ onto $B(X)$ satisfy

$$\sigma_i(\varphi_1(T)\varphi_2(S)) = \sigma_i(TS)$$

for all $T, S \in B(X)$, then either:

- (1) there is a bounded linear operator $A : X \rightarrow X$ such that $\varphi_1(T) = AT(\varphi_2(I)A)^{-1}$ and $\varphi_2(T) = \varphi_2(I)ATA^{-1}$ for all $T \in B(X)$, or
- (2) there is a bounded linear operator $A : X^* \rightarrow X$ such that $\varphi_1(T) = AT^*(\varphi_2(I)A)^{-1}$ and $\varphi_2(T) = \varphi_2(I)AT^*A^{-1}$ for all $T \in B(X)$. Where I is identity operator on X .

AMS Subject Classification: Primary 47B49; Secondary 47A10, 47B48

Key Words: Fredholm domain, semi-Fredholm domain, Weyl domain, pre-solver map

1. Introduction and Background

Throughout this paper, X denotes infinite-dimensional complex Banach spaces, and $B(X)$ denotes the space of all bounded linear operators on X and its unit

will be denoted by I . The dual space of X is denoted by X^* . For an operator $T \in B(X)$, the adjoint, the null space and the range of T are denoted by T^* , $\ker(T)$ and $R(T)$, respectively. Recall that an operator $T \in B(X)$ is called upper (resp. lower) semi-Fredholm if $R(T)$ is closed and $\ker(T)$ (resp. $\frac{X}{R(T)}$) is finite dimensional. The operator T is called semi-Fredholm if it is either upper or lower semi-Fredholm and T is Fredholm if it is both upper and lower semi-Fredholm. If T is a semi-Fredholm operator, then the index, $\text{ind}(T)$, is defined by

$$\text{ind}(T) = \dim(\ker T) - \text{codim}(R(T)).$$

Obviously, any Fredholm operator has a finite index. An operator $T \in B(X)$ is called a Weyl operator, if it is Fredholm of index zero. The spectrum, the semi-Fredholm domain, the Fredholm domain and the Weyl domain of $T \in B(X)$ are defined, respectively, by

$$\begin{aligned} \sigma(T) &= \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}, \\ \rho_{SF}(T) &= \{\lambda \in \mathbb{C} : T - \lambda I \text{ is a semi-Fredholm operator}\}, \\ \rho_F(T) &= \{\lambda \in \mathbb{C} : T - \lambda I \text{ is a Fredholm operator}\}, \\ \rho_W(T) &= \{\lambda \in \mathbb{C} : T - \lambda I \text{ is a Weyl operator}\}. \end{aligned}$$

Clearly, $\rho_W \subseteq \rho_F \subseteq \rho_{SF}$. The semi-Fredholm domain, the Fredholm domain and the Weyl domain in the spectrum of T is defined by

$$\begin{aligned} \sigma_1(T) &= \{\lambda \in \sigma(T) : T - \lambda I \text{ is a semi-Fredholm operator}\}, \\ \sigma_2(T) &= \{\lambda \in \sigma(T) : T - \lambda I \text{ is a Fredholm operator}\}, \\ \sigma_3(T) &= \{\lambda \in \sigma(T) : T - \lambda I \text{ is a Weyl operator}\}, \end{aligned}$$

respectively. Obviously, $\sigma_1(T) = \sigma(T) \cap \rho_{SF}(T)$ and $\sigma_3(T) \subseteq \sigma_2(T) \subseteq \sigma_1(T)$.

Several authors have studied the linear maps which preserve Fredholm or semi-Fredholm operators (see [1, 3, 4]). Shi and Ji [6] combined the spectrum with semi-Fredholm or Fredholm domain and described additive maps on $B(X)$ preserving the intersection of semi-Fredholm or Fredholm domain with the spectrum. In [2] Hajighasemi and Hejazian showed that if φ is a surjective map on $B(X)$ such that $\sigma_i(\varphi(T)\varphi) = \sigma_i(TS)$ for all $T, S \in B(X)$ then, up to a multiple factor of ± 1 , the map φ is either an automorphism or an anti-automorphism.

For a vector $x \in X$ and $f \in X^*$, let $x \otimes f$ stands for the operator of rank at most one defined by $(x \otimes f)y = f(y)x$ for every $y \in X$. Note that, $(x \otimes f)^* = f \otimes \hat{x}$, where \hat{x} denotes the canonical image of x in X^{**} . We denote

$F_1(X)$ the set of all rank-one operators on X and $N_1(X)$ be the set of nilpotent operators in $F_1(X)$. It is clear that $x \otimes f \in N_1(X)$ if and only if $f(x) = 0$. We denote by $F(X)$ the set of all finite rank operators in $B(X)$.

The first lemma is an elementary observation that gives the spectral domains of any rank one operator.

Lemma 1. (See [2, Remark 1.1].) *Let $x \in X$ and $f \in X^*$. If $i \in \{1, 2, 3\}$, we have*

$$\sigma_i(x \otimes f) := \begin{cases} \emptyset & \text{if } f(x) = 0, \\ \{f(x)\} & \text{if } f(x) \neq 0. \end{cases}$$

The following result characterizes in term of the spectral domains when two operators are the same.

Lemma 2. (See [2, Lemma 2.1].) *Let $T, S \in B(X)$ and $i \in \{1, 2, 3\}$. The following statements are equivalent:*

- (1) $T = S$.
- (2) $\sigma_i(TR) = \sigma_i(SR)$ for all $R \in B(X)$.
- (2) $\sigma_i(TR) = \sigma_i(SR)$ for all $R \in F_1(X) \setminus N_1(X)$.

The third lemma gives a spectral characterization of rank one operators in term of the spectral domains $\sigma_i(\cdot)$.

Lemma 3. ([2, Lemma 2.2].) *For $i \in \{1, 2, 3\}$ and a nonzero operator $R \in B(X)$, the following statements are equivalent:*

- (a) R has rank one.
- (b) $\sigma_i(RT)$ contains at most one element for all $T \in B(X)$.
- (c) $\sigma_i(RT)$ contains at most one element for every rank two operator $T \in B(X)$.

2. Main Results

The following lemma is a useful observation needed to establish the linearity of surjective maps preserving $\sigma_i(\cdot)$, $i \in \{1, 2, 3\}$.

Lemma 4. *Let $T, S \in B(X)$ and $i \in \{1, 2, 3\}$. For two vectors $x, y \in X$ and a linear functional $f \in X^*$, the following statements hold:*

- (1) $\sigma_i((x+y) \otimes f) = \sigma_i(x \otimes f) + \sigma_i(y \otimes f)$
- (2) $\sigma_i((T+S)R) = \sigma_i(TR) + \sigma_i(SR)$ for all $R \in F_1(X)$.

Proof. First, suppose that $f(x) \neq 0$ and $f(y) \neq 0$. Therefore, by Lemma 1,

$$\sigma_i((x+y) \otimes f) = \{f(x+y)\} = \{f(x)\} + \{f(y)\} = \sigma_i(x \otimes f) + \sigma_i(y \otimes f).$$

Now, suppose that $f(x) \neq 0$ and $f(y) = 0$, then

$$\sigma_i((x+y) \otimes f) = \{f(x)\} = \sigma_i(x \otimes f) + \sigma_i(y \otimes f).$$

Similarly, if $f(x) = 0$ and $f(y) \neq 0$, then $\sigma_i((x+y) \otimes f) = \sigma_i(x \otimes f) + \sigma_i(y \otimes f)$. Finally, if $f(x) = 0$ and $f(y) = 0$, then

$$\sigma_i((x+y) \otimes f) = \emptyset = \sigma_i(x \otimes f) + \sigma_i(y \otimes f).$$

(2) Write $R = x \otimes f$. Then, by part (1),

$$\begin{aligned} \sigma_i((T+S)R) &= \sigma_i((T+S)(x \otimes f)) = \sigma_i((Tx+Sx) \otimes f) \\ &= \sigma_i(Tx \otimes f) + \sigma_i(Sx \otimes f) \\ &= \sigma_i(T(x \otimes f)) + \sigma_i(S(x \otimes f)) = \sigma_i(TR) + \sigma_i(SR). \end{aligned}$$

□

The following theorem is the main result of this paper.

Theorem 5. *Let φ_1 and φ_2 be maps from $B(X)$ onto $B(X)$ which satisfy*

$$\sigma_i(\varphi_1(T)\varphi_2(S)) = \sigma_i(TS), \quad (T, S \in B(X))$$

where, $i \in \{1, 2, 3\}$. Then either:

- (1) there is a bounded linear operator $A : X \rightarrow X$ such that $\varphi_1(T) = AT(\varphi_2(I)A)^{-1}$ and $\varphi_2(T) = \varphi_2(I)ATA^{-1}$ for all $T \in B(X)$, or
- (2) there is a bounded linear operator $A : X^* \rightarrow X$ such that $\varphi_1(T) = AT^*(\varphi_2(I)A)^{-1}$ and $\varphi_2(T) = \varphi_2(I)AT^*A^{-1}$ for all $T \in B(X)$, where I is identity operator on X .

Proof. The proof of it will be completed after checking several claims.

Claim 1. φ_1 is injective and $\varphi_1(0) = 0$.

If $\varphi_1(T) = \varphi_1(S)$ for some $T, S \in B(X)$, we get that

$$\sigma_i(TR) = \sigma_i(\varphi_1(T)\varphi_2(R)) = \sigma_i(\varphi_1(S)\varphi_2(R)) = \sigma_i(SR)$$

for all $R \in F_1(X)$. By Lemma 2, we see that $T = S$ and φ_1 is injective. For the second part of this claim,

$$\sigma_i(\varphi_1(0)\varphi_2(T)) = \sigma_i(0T) = \emptyset = \sigma_i(0\varphi_2(T))$$

for all $T \in B(X)$. Again by Lemma 2 and the surjectivity of φ_2 , we see that $\varphi_1(0) = 0$.

Claim 2. φ_1 and φ_2 preserve rank one operators in both directions.

Let $R = x \otimes f$ be a rank one operator where $x \in X$ and $f \in X^*$. Note that, $\varphi_1(R) \neq 0$, since $\varphi_1(0) = 0$ and φ_1 is injective. Let $T \in B(X)$ be an arbitrary operator. By Lemma 3, $\sigma_i(RT)$ contains at most one element and $\sigma_i(\varphi_1(R)\varphi_2(T)) = \sigma_i(RT) \subseteq \{f(Tx)\}$. Since φ_1 is surjective, we conclude that, $\sigma_i(\varphi_1(R)S)$ has at most one element for every operator $S = \varphi_1(T) \in B(X)$. By Lemma 3, we see that $\varphi_1(R)$ has rank one. Conversely, assume that $\varphi_1(R)$ is rank one for some operator $R \in B(X)$, and note that $R \neq 0$ and that $\sigma_i(\varphi_1(R)\varphi_2(T))$ has at most one element for all $T \in B(X)$. Therefore, $\sigma_i(RT)$ has at most one element for all $T \in B(X)$. Again Lemma 3 tells us that R is rank one and thus φ_1 preserves the rank one operators in both directions. It is clear that, φ_2 preserves rank one operators in both directions in a similar way.

Claim 3. φ_1 is linear.

To establish the linearity of φ_1 , let us first show that φ_1 is homogenous. Let R be an arbitrary rank-one operator. For every $\alpha \in \mathbb{C}$ and $T \in B(X)$, we have

$$\begin{aligned} \sigma_i(\alpha\varphi_1(T)\varphi_2(R)) &= \alpha\sigma_i(\varphi_1(T)\varphi_2(R)) \\ &= \alpha\sigma_i(TR) = \sigma_i((\alpha T)R) = \sigma_i(\varphi_1(\alpha T)\varphi_2(R)). \end{aligned}$$

Since φ_2 is surjective and preserve rank one operators in both directions, Lemma 2 shows that $\varphi_1(\alpha T) = \alpha\varphi_1(T)$. Now, let us show that φ_1 is additive. Let R be an arbitrary rank-one operator and $T, S \in B(X)$. By Lemma 4 and the previous claim, we have

$$\begin{aligned} \sigma_i(\varphi_1(T+S)\varphi_2(R)) &= \sigma_i((T+S)R) = \sigma_i(TR) + \sigma_i(SR) \\ &= \sigma_i(\varphi_1(T)\varphi_2(R)) + \sigma_i(\varphi_1(S)\varphi_2(R)) \\ &= \sigma_i((\varphi_1(T) + \varphi_1(S))R). \end{aligned}$$

By Lemma 2, we deduce that $\varphi_1(T+S) = \varphi_1(T) + \varphi_1(S)$ for all $T, S \in B(X)$.

Claim 4. φ_1 and φ_1 have the desired forms.

By the previous claim $\varphi_1 : F(X) \rightarrow F(X)$ is a bijective linear map which preserves rank one operators in both directions. Thus by [5, Theorem 3.3], φ_1

has one of the following forms.

(1) There exist bijective linear maps $A : X \rightarrow X$ and $B : X^* \rightarrow X^*$ such that

$$\varphi_1(x \otimes f) = Ax \otimes Bf, \quad x \in X, \quad f \in X^*.$$

(2) There exist bijective linear maps $A : X^* \rightarrow X$ and $B : X \rightarrow X^*$ such that

$$\varphi_1(x \otimes f) = Af \otimes Bx, \quad x \in X, \quad f \in X^*.$$

Assume that case (1) occurs. Let $x \in X$ and $f \in X^*$ be arbitrary. Assume first that $f(x) \neq 0$, using Lemma 1,

$$\{0\} \neq \{f(x)\} = \sigma_i(x \otimes f) = \sigma_i(\varphi_1(x \otimes f)\varphi_2(I)) = \sigma_i((Ax \otimes Bf)\varphi_2(I)),$$

which means that $Bf(\varphi_2(I)Ax) \neq 0$. Then Lemma 1 implies that

$$\{f(x)\} = \sigma_i(x \otimes f) = \sigma_i(\varphi_1(x \otimes f)\varphi_2(I)) = \{(Bf)(\varphi_2(I)Ax)\}.$$

Now, if $f(x) = 0$, we choose a linear functional $g \in X^*$ such that $g(x) \neq 0$. By what has been shown lastly applied to both g and $f + g$, we have

$$g(x) = (Bg)(\varphi_2(I)Ax) \text{ and } (f + g)(x) = (B(f + g))(\varphi_2(I)Ax).$$

Then,

$$\begin{aligned} f(x) + g(x) &= (f + g)(x) = (B(f + g))(\varphi_2(I)Ax) \\ &= (Bf)(\varphi_2(I)Ax) + (Bg)(\varphi_2(I)Ax) \\ &= (Bf)(\varphi_2(I)Ax) + g(x). \end{aligned}$$

Therefore,

$$f(x) = (Bf)(\varphi_2(I)Ax), \quad (x \in X, f \in X^*), \quad (\star).$$

It is clear that $\varphi_2(I)$ is injective, if not, there is a nonzero vector $y \in X$ such that $\varphi_2(I)y = 0$. Take $x = A^{-1}y$, and let $f \in X^*$ be a linear functional such that $f(x) \neq 0$. By (\star) , we have $0 \neq f(x) = (Bf)(\varphi_2(I)Ax) = (Bf)(\varphi_2(I)y) = 0$. This contradiction tells us that $\varphi_2(I)$ is injective. Now, we show that A is continuous. Assume that $(x_n)_n$ is a sequence in X such that $\lim_{n \rightarrow \infty} x_n = x \in X$ and $\lim_{n \rightarrow \infty} Ax_n = y \in X$. Then, for every $f \in X^*$, we have $(Bf)(\varphi_2(I)y) = \lim_{n \rightarrow \infty} (Bf)(\varphi_2(I)Ax_n) = \lim_{n \rightarrow \infty} f(x_n) = f(x) = (Bf)(\varphi_2(I)Ax)$. Since B is bijective and $f \in X^*$ is an arbitrary linear functional, the closed graph theorem shows that A is continuous. Moreover, we have

$f(x) = (Bf)(\varphi_2(I)Ax) = (\varphi_2(I)A)^*Bf(x)$ for every $x \in X$ and $f \in X^*$, and thus $I_{X^*} = (\varphi_2(I)A)^*B = A^*(\varphi_2(I))^*B$. It follows that $(A^*)^{-1}B^{-1} = (\varphi_2(I))^*$ and therefore $\varphi_2(I)$ is invertible and $B^* = (\varphi_2(I)A)^{-1}$. Hence, we have

$$\varphi_1(x \otimes f) = Ax \otimes Bf = A(x \otimes f)B^* = A(x \otimes f)(\varphi_2(I)^*A)^{-1}$$

for all $x \in X$ and $f \in X^*$. Therefore, for every $T \in B(X)$, we have

$$\begin{aligned} \sigma_i(A(x \otimes f)B^*\varphi_2(T)) &= \sigma_i(\varphi_1(x \otimes f)\varphi_2(T)) = \sigma_i((x \otimes f)T) \\ &= \sigma_i(A(x \otimes f)B^*(B^*)^{-1}TA^{-1}), \end{aligned}$$

for any $x \in X$ and $f \in X^*$. By Lemma 2, we conclude that $\varphi_2(T) = (B^*)^{-1}TA^{-1} = \varphi_2(I)ATA^{-1}$ for all $T \in B(X)$. For the form of φ_1 , Observe that

$$\begin{aligned} \sigma_i(AT(\varphi_2(I)A)^{-1}\varphi_2(S)) &= \sigma_i(AT(\varphi_2(I)A)^{-1}(\varphi_2(I)A)SA^{-1}) \\ &= \sigma_i(TS) = \sigma_i(\varphi_1(T)\varphi_2(S)), \end{aligned}$$

for all $T \in B(X)$. By Lemma 2, we have $\varphi_1(T) = AT(\varphi_2(I)A)^{-1}$, for every $T \in B(H)$.

If case (2) occurs, similar to the proof of case (1), for all $x \in X$ and $f \in X^*$ we obtain $f(x) = (Bx)(\varphi_2(I)Af)$. Also we have that $A : X^* \rightarrow X$, $\varphi_2(I) : X \rightarrow X$ and $B : X \rightarrow X^*$ are invertible. Moreover, if J denotes the canonical embedding of X in X^{**} , we have $B^*J\varphi_2(I)A = I_{X^*}$ and hence X is reflexive. So for every $x \in X$ and $f \in X^*$

$$\varphi_1(x \otimes f) = Af \otimes Bx = A(f \otimes \hat{x})B = A(f \otimes \hat{x})(\varphi_2(I)A)^{-1}.$$

Therefore, for every $R \in F_1(X)$, we see that $\varphi_1(R) = AR^*(\varphi_2(I)A)^{-1}$. By a proof similar to the above, we get $\varphi_1(T) = AT^*(\varphi_2(I)A)^{-1}$ and $\varphi_2(T) = \varphi_2(I)AT^*A^{-1}$ for all $T \in B(X)$. \square

References

- [1] M. Gonzalez, M. Mbekhta, Linear maps that preserve semi-Fredholm operators acting on Banach spaces, *Acta Sci Math.*, **84**, No 12 (2018), 137-149.
- [2] S. Hajighasemi, S. Hejazian, Maps preserving some spectral domains of operator products, *Linear Multilinear Alg.*, (2020) 2367-2381.
- [3] M. Mbekhta, Linear maps preserving the set of Fredholm operators, *Proc Amer Math Soc.*, **135**, No 11 (2007), 3613-3619.

- [4] M. Mbekhta, P. Semrl, Linear maps preserving semi-Fredholm operators and generalized invertibility, *Linear Multilinear Alg.*, **57**, No 1 (2009), 55-64.
- [5] M. Omladic, P. Semrl, Additive mappings preserving operators of rank one, *Linear Algebra Appl.*, **182** (1993), 239-256.
- [6] W. Shi, G. Ji, Additive maps preserving the semi-Fredholm domain in spectrum, *Ann Funct Anal.*, **7** (2016), 254-260.