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Abstract: Let B(X) be the algebra of all bounded linear operators on infinite-
dimensional complex Banach space X. For T' € B(X) and i € {1,2,3}, let 0,(T)
denote any one of the semi-Fredholm domain, the Fredholm domain and the
Weyl domain in the spectrum. We prove that if two maps ¢; and @2 from
B(X) onto B(X) satisfy

9i(p1(T)p2(5)) = 0i(T'S)
for all T, S € B(X), then either:
(1) there is a bounded linear operator A : X — X such that 1(T) = AT (po(1)A) ™1
and po(T) = @o(I)AT A~ for all T € B(X), or
(2) there is a bounded linear operator A : X* — X such that ¢(T) =
AT*(po(1)A)~ and po(T) = @o(I)AT*A~! for all T € B(X). Where I is
identity operator on X.
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1. Introduction and Background

Throughout this paper, X denotes infinite-dimensional complex Banach spaces,
and B(X) denotes the space of all bounded linear operators on X and its unit
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will be denoted by I. The dual space of X is denoted by X*. For an operator
T € B(X), the adjoint, the null space and the range of T" are denoted by 7™,
ker(T) and R(T), respectively. Recall that an operator T € B(X) is called
upper (resp. lower) semi-Fredholm if R(T") is closed and ker(T) (resp. %)
is finite dimensional. The operator T is called semi-Fredholm if it is either
upper or lower semi-Fredholm and T is Fredholm if it is both upper and lower
semi-Fredholm. If 7" is a semi-Fredholm operator, then the index, ind(T), is
defined by
ind(T) = dim(kerT) — codim(R(T)).

Obviously, any Fredholm operator has a finite index. An operator T' € B(X) is
called a Weyl operator, if it is Fredholm of index zero. The spectrum, the semi-
Fredholm domain, the Fredholm domain and the Weyl domain of 7' € B(X)
are defined, respectively, by

o(T)={AeC : T — Al is not invertible},

psr(T)={AeC : T — A is a semi — Fredholm operator},
pr(T)={\e€C : T — Xl is a Fredholm operator},
pw(T)={Ae€C : T — X\ is a Weyl operator}.

Clearly, pww C pp(T) C psp(T). The semi-Fredholm domain, the Fredholm
domain and the Weyl domain in the spectrum of T is defined by

o1(T)={N€a(T) : T— A isasemi— Fredholm operator},

oo(T) ={A€o(T) : T — A is a Fredholm operator},
o3(T)={N€a(T) : T— A is a Weyl operator},

respectively. Obviously, 01(T') = o(T) () psr(T) and o3(T) C 02(T) C 01(T).
Several authors have studied the linear maps which preserve Fredholm or
semi-Fredholm operators (see [1, 3, 4]). Shi and Ji [6] combined the spectrum
with semi-Fredholm or Fredholm domain and described additive maps on B(X)
preserving the intersection of semi-Fredholm or Fredholm domain with the spec-
trum. In [2] Hajighasemi and Hejazian showed that if ¢ is a surjective map on
B(X) such that o;(¢(T)p) = 0;(T'S) for all T, S € B(X) then, up to a multiple
factor of +1, the map ¢ is either an automorphism or an anti-automorphism.
For a vector x € X and f € X*, let  ® f stands for the operator of
rank at most one defined by (z ® f)y = f(y)z for every y € X. Note that,
(r® f)* = f® &, where & denotes the canonical image of x in X**. We denote
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F1(X) the set of all rank-one operators on X and N;j(X) be the set of nilpotent
operators in Fi(X). It is clear that x ® f € Ni(X) if and only if f(x) = 0. We
denote by F(X) the set of all finite rank operators in B(X).

The first lemma is an elementary observation that gives the spectral do-
mains of any rank one operator.

Lemma 1. (See [2, Remark 1.1].) Let z € X and f € X*. Ifi € {1,2,3},
we have
| _ [0 if f(x)=0,
wwon={ ey i 1o zo

The following result characterizes in term of the spectral domains when two
operators are the same.

Lemma 2. (See [2, Lemma 2.1].) Let T, S € B(X) and i € {1,2,3}. The
following statements are equivalent:
() T=25.
(2) 0;(TR) = 0;(SR) for all R € B(X).

The third lemma gives a spectral characterization of rank one operators in
term of the spectral domains o;(.).

Lemma 3. ([2, Lemma 2.2].) For i € {1,2,3} and a nonzero operator
R € B(X), the following statements are equivalent:
(a) R has rank one.
(b) 0;(RT) contains at most one element for all T € B(X).
(c) o;(RT') contains at most one element for every rank two operator T € B(X).

2. Main Results

The following lemma is a useful observation needed to establish the linearity of
surjective maps preserving o;(.), i € {1,2,3}.

Lemma 4. LetT,S € B(X) and i € {1,2,3}. For two vectors z,y € X
and a linear functional f € X*, the following statements hold:
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(1) oi((z+y) @ f) =0ilz® f) +0i(y @ f)
(2) 0:((T + S)R) = 0:(TR) + 03(SR) for all R € Fy(X).

Proof. First, suppose that f(z) # 0 and f(y) # 0. Therefore, by Lemma 1,
oi(+y) @ f)={fl@+y)} ={f@)}+{fW}=0lz® )+ oy )
Now, suppose that f(z) # 0 and f(y) = 0, then
oil(z+y) @ f)={f(2)} =0i(z® f) +0i(y @ f).
Similarly, if f(x) =0 and f(y) # 0, then o;((z+y)® f) = oi(z @ ) + 03 (y R f).
Finally, if f(z) = 0 and f(y) = 0, then
oi((z+y)®@f)=0=0i(z® f) +oi(y® f).

(2) Write R = 2 ® f. Then, by part (1),

oi((T+ S)R) = 0;((T + S)(z ® f)) = 0y((Tx + Sz) @ f)

=0i(Tx® f)+0;(Sx® f)
=0i(T(x® f)) + 0i(S(x ® f)) = 0:(TR) + 0:(SR).

The following theorem is the main result of this paper.

Theorem 5. Let ¢ and o be maps from B(X) onto B(X) which satisfy
0i(e1(T)g2(5)) = 0i(T'S), (T,5 € B(X))

where, i € {1,2,3}. Then either:

(1) there is a bounded linear operator A : X — X such that 1 (T) = AT (p2(I1)A)~!
and 3(T) = @o(I)ATA™! for all T € B(X), or

(2) there is a bounded linear operator A : X* — X such that p1(T) =
AT*(po(1)A)~ and @o(T) = @o(I)AT*A™Y for all T € B(X), where I is
identity operator on X.

Proof. The proof of it will be completed after checking several claims.

Claim 1. ¢y is injective and ¢1(0) = 0.
If p1(T) = ¢1(S) for some T, S € B(X), we get that

0i(TR) = 0i(p1(T)p2(R)) = 0i(p1(S)p2(R)) = 0i(SR)
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for all R € F1(X). By Lemma 2, we see that 7' = S and ¢ is injective. For
the second part of this claim,

0i(1(0)p2(T)) = 0:(0T) = 0 = 0;(0p2(T'))

for all T € B(X). Again by Lemma 2 and the surjectivity of ¢o, we see that
¢1(0) = 0.

Claim 2. ¢; and o preserve rank one operators in both directions.

Let R = 2 ® f be a rank one operator where z € X and f € X*. Note
that, ¢1(R) # 0, since ¢1(0) = 0 and ¢ is injective. Let 7' € B(X) be an
arbitrary operator. By Lemma 3, o;(RT) contains at most one element and
oi(p1(R)p2(T)) = 0:(RT) C {f(Tz)}. Since p; is surjective, we conclude that,
oi(p1(R)S) has at most one element for every operator S = ¢1(T) € B(X).
By Lemma 3, we see that ¢;(R) has rank one. Conversely, assume that ¢1(R)
is rank one for some operator R € B(X), and note that R # 0 and that
0i(p1(R)p2(T)) has at most one element for all T € B(X). Therefore, o;(RT)
has at most one element for all T' € B(X). Again Lemma 3 tells us that R is
rank one and thus ¢; preserves the rank one operators in both directions. It is
clear that, @9 preserves rank one operators in both directions in a similar way.

Claim 3. ¢ is linear.

To establish the linearity of 7, let us first show that ¢; is homogenous.
Let R be an arbitrary rank-one operator. For every a € C and T' € B(X), we
have

oi(ap1(T)p2(R)) = aoi(e1(T)p2(R))
= aoi(TR) = 0i((aT)R) = oi(p1(aT)p2(R)).
Since 9 is surjective and preserve rank one operators in both directions, Lemma
2 shows that ¢1(aT) = api(T). Now, let us show that ¢ is additive. Let R

be an arbitrary rank-one operator and 7,5 € B(X). By Lemma 4 and the
previous claim, we have

oi(p1(T + S)p2(R)) = (T + S)R) = 0i(T'R) + 0;(SR)
= 0i(p1(T)p2(R)) + 0i(p1(S)p2(R))
= 0i((¢1(T) + p2(5)) R).

By Lemma 2, we deduce that ¢1(T' 4+ S) = p1(T) + ¢1(5) for all T, S € B(X).

Claim 4. ¢; and ¢ have the desired forms.
By the previous claim ¢; : F(X) — F(X) is a bijective linear map which
preserves rank one operators in both directions. Thus by [5, Theorem 3.3], ¢1
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has one of the following forms.

(1) There exist bijective linear maps A : X — X and B : X* — X* such that
prz® f)=Ar@Bf, zeX, feX"

(2) There exist bijective linear maps A : X* — X and B : X — X* such that
vz f)=Af®@Bzx, z€X, feX".

Assume that case (1) occurs. Let x € X and f € X* be arbitrary. Assume first
that f(z) # 0, using Lemma 1,

{0} #{f(2)} = 0i(z @ [) = 0i(pr(z @ [)p2(I)) = 0i((Az @ Bf)pa(l)),
which means that Bf(p2(I)(Az) # 0. Then Lemma 1 implies that
{f(@)} = 0i(z @ f) = 0ilpr(x @ flea(])) = {(Bf)(p2(l)Az)}-

Now, if f(x) = 0, we choose a linear functional g € X* such that g(x) # 0.
By what has been shown lastly applied to both g and f + g, we have

g(x) = (Bg)(p2(I)Ax) and (f + g)(x) = (B(f + g))(w2(I)Az).

Then,
f@)+g9(x) = (f + 9)(@) = (B(f + 9))(p2(I)Az)
(B )(p2(I)Az) + (Bg)(p2(1)Ax)
= (Bf)(p2(I)Az) + g(x)
Therefore,
f(x) = (Bf)(p2(D)Az), (ze X, feX), (%)

It is clear that (po(I) is injective, if not, there is a nonzero vector y € X
such that po(I)y = 0. Take z = A~'y, and let f € X* be a linear func-
tional such that f(z) # 0. By (%), we have 0 # f(z) = (Bf)(p2(I)Az) =
(Bf)(p2(I)y) = 0. This contradiction tells us that ¢2(I) is injective. Now, we
show that A is continuous. Assume that (z,), is a sequence in X such that
lim, sooxp = € X and lim,,_,o, Az, = y € X. Then, for every f € X*,
we have (Bf)(ia(I)y) = im0 (B)(2(1) An) = it —soc f() = f(z) =
(Bf)(p2()Ax). Since B is bijective and f € X* is an arbitrary linear func-
tional, the closed graph theorem shows that A is continuous. Moreover, we have
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f(x) = (Bf)(p2(I)Ax) = (p2(I)A)*Bf(x) for every z € X and f € X*, and
thus Ix« = (p2(I)A)*B = A*(p2(I))*B. It follows that (A*)"!B~1 = (po(1))*
and therefore @o(1I) is invertible and B* = (po(I)A)~!. Hence, we have

pir(z® f)=Az@Bf = Alz® f)B* = A(x ® f)(p2(1)"A) ™
for all x € X and f € X*. Therefore, for every T' € B(X), we have

0i(Alx @ [)B*pa(T)) = 0i(p1(x @ f)ea(T)) = 0i((z @ f)T)
= 0i(A(z ® f)B"(B")"'TA™),

for any z € X and f € X*. By Lemma 2, we conclude that po(T) =
(B*)"'TA Y = po(I)AT AL for all T € B(X). For the form of ¢, Observe
that

oi( AT (p2(1)A) " pa(8)) = 0i(AT (g2 (1) A) (g2 (1) A)SA™T)
= 0i(TS) = oi(p1(T)p2(5)),

for all T € B(X). By Lemma 2, we have ¢1(T) = AT (pa(I)A)~, for every
T € B(H).

If case (2) occurs, similar to the proof of case (1), for all x € X and f € X*
we obtain f(x) = (Bx)(p2(I)Af). Also we have that A : X* — X, ¢o([]) :
X — X and B : X — X* are invertible. Moreover, if J denotes the canonical
embedding of X in X™*, we have B*Jpo(I)A = Ix- and hence X is reflexive.
So for every z € X and f € X*

pi(z® f) = Af ©@ Bz = A(f © 2)B = A(f ® &) (p2(1)A) .

Therefore, for every R € Fy(X), we see that ¢1(R) = AR*(p2(I)A)~L. By
a proof similar to the above, we get o1(T) = AT*(p2(I)A)~! and @o(T) =
0o (I)AT* A~ for all T € B(X). O
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