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motion in the Manhattan lattice. For such a model, the existence and unique-
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1. Introduction

One of the actively developing areas of research is related to the study of soliton
solutions (traveling wave type solutions). Both the questions of the existence

Received: July 2, 2023 © 2023 Academic Publications



570 L. Beklaryan, A. Beklaryan, A. Akopov

of soliton solutions and the models in which they arise are important. A large
number of works are devoted to this problem [27, 25, 17, 26]. Research methods
are also diverse. One of the most frequently used methods of studying such sys-
tems is the constructive construction of solutions using the explicit form of the
right side, as well as the presence of various symmetries, or its possible period-
icity, infinite differentiability, analyticity. Further, by methods of perturbation
theory, soliton solutions are also established for the close right-hand sides. A
review of works in this direction for infinite-dimensional (homogeneous) systems
with Frenkel-Kontorova and Fermi-Pasta-Ulama potentials is given in [26]. At
the same time, this approach does not allow us to describe the space of all
soliton solutions, as well as the asymptotics of their possible growth.

The presented work is devoted to the study of the motion model in the
Manhattan lattice. An aggregated model of such a movement is considered.
In such a model, we assume that the number of lattice nodes is sufficiently
large. Therefore, the lattice under consideration will be considered complete in
all directions and homogeneous. Another assumption concerns the lack of flow
details by direction.

The steady flows in such a lattice are described by soliton solutions for
an infinite-dimensional ordinary differential equation in the form of a finite-
difference analog of a parabolic equation. A formalism is proposed below in
which the soliton solutions are in one-to-one correspondence with the solutions
of a parametric family of induced functionally differential pointwise equations.
The parameter of such a family of equations is the characteristic of the soliton
solution.

Within the framework of the proposed formalism, it is possible to describe
the entire space of soliton solutions with characteristics in the selected ranges.
The possible growth of such solutions is described, where the growth is also
related to the magnitude of the characteristic of the soliton solution.

The right part (operator) of an infinite-dimensional differential equation
and the right part of a family of induced functional differential equations form
a dual pair of “function-operator”. Such dualism turns out to be very useful.
In some cases, it is possible to use the properties of the finiteness of the phase
space of solutions of a family of induced functional differential equations. In
other cases, for soliton solutions, it is possible to use the spectral properties
of the right-hand side of an infinite-dimensional differential equation. For the
dual pair “function-operator”, a natural question arises about the existence of
a dual pair with the same family of functions, but a simpler operator.

For the model under consideration, a solution to the mentioned question is
given. Among soliton solutions, as the most informative, an important class of
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bounded soliton solutions stands out.
The existence and uniqueness theorem of a soliton solution is established,

the ranges of characteristics for which the statements of the theorem are valid
are indicated, and the asymptotics of the possible growth of such solutions are
obtained. A complete family of bounded soliton solutions is constructed for the
model under consideration.

The approach of studying soliton solutions with a given characteristic for an
infinite-dimensional dynamical system based on the existence of a one-to-one

correspondence of such solutions with solutions of a family of induced functional
differential equations was used in a number of papers [2, 3, 6, 7, 8, 9, 21, 28,
23, 22].

Beyond the discussion, we leave such an important problem as the question
of the solvability of functional differential equations. On this issue, you can
refer to the works [19, 20, 16, 9, 1] and a number of other works.

2. Manhattan lattice

The traffic pattern in the Manhattan lattice is such that from each point of the
lattice node, movement is possible in three directions along the main highways
(forward, left, right) and movement in the opposite direction through the drives.
Let’s describe an aggregated model of such a movement.

For the group Γ = Z
2, {γ1, γ2} is the system of its generators, where γ1 =

(1, 0), γ2 = (0, 1). Let us consider a one-dimensional finite difference analog of
a parabolic equation

ẏγ(t) =

2
∑

l=1

αγl [yγlγ − yγ ] +

2
∑

l=1

βγl [yγ−1

l
γ − yγ ] + φ(yγ), (1)

yγ ∈ R, ∀γ ∈ Z
2, for almost all t ∈ R,

where the potential φ is a continuous function. The solution of such a system
is called any vector function {yγ(·)}γ∈Z2 , the coordinates yγ(·), γ ∈ Z

2 of which
are absolutely continuous functions and satisfy the system (1) for almost all
t ∈ R.

For each γ ∈ Z
2 (for each node of a two-dimensional lattice), yγ denotes

the amount of the flow of the transport flow in it. The values αγl [yγlγ − yγ ],
βγl [yγ−1

l
γ − yγ ], l = 1, 2, set the intensity of the flow changes in the node γ

depending on the difference of the flow values in the nodes γ, γlγ, γ
−1
l γ, l = 1, 2,

respectively. With negative values of such differences, the flows from the node
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γ go to the nodes γlγ, γ
−1
l γ, l = 1, 2, respectively. With positive values of such

differences, the flows go from the container to the γ node. The potential φ is
given by a continuous function and has the form

φ(t) =











0, t ∈ (−∞, 0],

φ(t) > 0, t ∈ (0,△),

σ[t−△], σ < 0, t ∈ [△,+∞).

(2)

The flow level equal to △ is critical for the node and is determined by its
technical capabilities. When the values of the flow magnitude are less than the
critical value of △, the flow goes from the container to the node γ. When the
flow values are greater than the critical value of △, the flow goes from the node
γ to the container.

Let us rewrite the system (1) in a different form

ẏγ(t) =

2
∑

l=1

αγlyγlγ −
2

∑

l=1

(αγl + βγl)yγ +

2
∑

l=1

βγlyγ−1

l
γ + φ(yγ), (3)

yγ ∈ R, ∀γ ∈ Z
2, for almost all t ∈ R.

If the conditions αγ1 = βγ1 = αγ2 = βγ2 = 1 are fulfilled for the technological
characteristics of the lattice nodes, then the equation (3) turns out to be a finite
difference analog of the heat equation.

For the system under consideration, we will study traveling wave type so-
lutions (soliton solutions) as the most informative class of solutions for the
steady-state flow structure.

Definition 1. We will say that the solution {yγ(·)}γ∈Z2 of the system (1)
defined for all t ∈ R has a traveling wave type (soliton solution) if there exists
τ > 0 independent of t and γ, that for all γ ∈ Z

2 and t ∈ R the following
equality is satisfied

yγ(t+ τ) = yγlγ(t), l = 1, 2. (4)

The constant τ will be called the characteristic of the traveling wave.

The task is to establish in which ranges of the characteristic τ soliton solu-
tion exists, what is the asymptotics of such solutions and their dependence on
the parameters of the system. Among soliton solutions, an important class of
bounded soliton solutions stands out as one of the most informative classes of
solutions. Thus, we should study the solutions of the system (3)-(4), which is
a boundary value problem with non-local boundary conditions (4).
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3. Dual pairs “function-operator”

We will present the boundary value problem under consideration in operator
form and construct a pointwise functional differential equation induced by such
a boundary value problem. The operator defining the right part of an infinite-
dimensional differential equation and the function defining the right part of an
induced pointwise functional differential equation form a dual pair “function-
operator”. For such a dual pair, statements will be formulated about the corre-
spondence between the solutions of the operator boundary value problem and
the induced functional differential equation of pointwise type.

3.1. The operator form of the boundary value problem and the
induced functional differential equation

Let us formulate the boundary value problem (3)-(4) in operator form. By
K1

Z2 we denote the space of sequences with elements κ = {xγ}γ∈Z2 , xγ ∈ R,
endowed with the Tychonoff topology. We define the linear operator A, the
nonlinear operator F and the group of shift operators T = {Tγ̂ : γ̂ ∈ Z

2}, acting
continuously from the space K1

Z2 into itself according to the following rule: for
any γ, γ̂ ∈ Z

2, κ ∈ K1
Z2 , κ = {xγ}γ∈Z2 ,

(Aκ)γ =

2
∑

l=1

αγlxγlγ −
2

∑

l=1

(αγl + βγl)xγ +

2
∑

l=1

βγlxγ−1

l
γ ,

(F(κ))γ = φ(xγ), Tγ̂{xγ}γ∈Z2 = {xγγ̂}γ∈Z2 .

We define the cyclic group Q =< q̌ >, q̌(t) = t+ τ , as well as the epimorphism
η : Z2 → Q, where η(γl) = q̌, l = 1, 2 for the generators γl, l = 1, 2 of the group
Z
2. Let’s introduce the notation GZ2 = A+ F.

The boundary value problem (3)-(4) has the following equivalent operator
representation

κ̇(t) = GZ2(κ), for almost all t ∈ R, (5)

κ(η(γ̂)(t)) = Tγ̂κ(t), ∀γ̂ ∈ {γ1, γ2}, ∀t ∈ R. (6)

On the left side of the equation (5) there is the Gateaux derivative. As a
solution of an infinite-dimensional differential equation (5) is called every vec-
tor function κ(t) = {xγ(t)}γ∈Z2 , t ∈ R, each coordinate of which is given by
an absolutely continuous function, and the vector function itself satisfies this
equation for almost all t ∈ R.



574 L. Beklaryan, A. Beklaryan, A. Akopov

Since {γ1, γ2} are the generators of the group Z
2, the system (5)-(6) is

equivalent to the system

κ̇(t) = GZ2(κ), for almost all t ∈ R, (7)

κ(η(γ̂)(t)) = Tγ̂κ(t), ∀γ̂ ∈ Z
2, ∀t ∈ R. (8)

The condition (8), which provides a traveling wave condition (soliton solution),
means that time shift is equal to space shift. It is not difficult to notice that
the operator GZ2 is permuted with the shift operators Tγ̂ , γ̂ ∈ Z

2, i.e. for any
γ̂ ∈ Z

2 there is the equality Tγ̂GZ2 = GZ2Tγ̂ . Such a commutation property is
a consequence of the spatial homogeneity of the system and the reason for the
presence of all canonical properties of soliton solutions.

Let us consider the induced functional differential equation of pointwise type

ẋ(t) =
2

∑

l=1

αγlx(t+ τ)−
2

∑

l=1

(αγl + βγl)x(t) +
2

∑

l=1

βγlx(t− τ)

+φ(x(t)), for almost all t ∈ R. (9)

Such an equation will be obtained by proving the Theorem 2. It is a represen-
tation of the coordinate of the operator equation (7) corresponding to the unit
element e of the group Z

2, using the traveling wave condition (8).
Solution of the pointwise type functional differential equation (9) is any

absolutely continuous function x(t), t ∈ R, satisfying this equation almost ev-
erywhere.

We transform the functional differential equation of pointwise type (9). To
do this, we introduce the notation αγ1 + αγ2 = α, βγ1 + βγ2 = β. Then the
equation will be rewritten as

ẋ(t) = αx(t+ τ)− (α+ β)x(t) + βx(t− τ) + φ(x(t)), (10)

for almost all t ∈ R.

The right part of such a pointwise type functional differential equation is
given by the mapping g : R3 → R and has the form

g(z1, z0, z−1) = αz1 − (α+ β)z0 + βz−1 + φ(z0).

The operator GZ2 , as the right part of an infinite-dimensional ordinary differen-
tial equation (7), and the function g, as the right part of an induced functional
differential equation of pointwise type (9), form a dual pair (g|GZ2).

The following important statement is true.
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Theorem 2. Let (g|GZ2) be a dual pair. Each solution x(t), t ∈ R of a
pointwise type functional differential equation (9) corresponds to the solution
κ(t) = {xγ(t)}γ∈Z2 , t ∈ R of the boundary value problem (7)-(8) (traveling wave
type solution) and vice versa. Such solutions are connected by the relations
xγ(t) = xe(η(γ)(t)), xe(t) = x(t), ∀γ ∈ Z

2, ∀t ∈ R.

Proof. Let κ(t) = {xγ(t)}γ∈Z2 , t ∈ R be a solution of the boundary value
problem (7)-(8). For such a solution in the infinite-dimensional differential
equation (7), the coordinate xe(t), t ∈ R, corresponding to the unit element
e = (0, 0) of the group Z

2 satisfies the equation

ẋe(t) =

2
∑

l=1

αγlxγl(t)−
2

∑

l=1

(αγl + βγl)xe(t) +

2
∑

l=1

βγlxγ−1

l
(t)

+φ(xe(t)), for almost all t ∈ R. (11)

From the boundary condition (8) it follows that the system of equalities xγ(t) =
x(η(γ)(t), γ ∈ Z

2 holds for the solution under consideration and, in particular,
the equalities xγl(t) = xe(η(γl)(t)) = xe(t + τ), xγ−1

l
(t) = xe(η(γ

−1
l )(t)) =

xe(t− τ), l = 1, 2 hold. If these values of xγl(t), xγ−1

l
(t), l = 1, 2 substitute into

the equation (11) and re-assign the variable xe to the variable x, then such an
equation will coincide with the functional differential equation (9).

In the opposite direction: Let x(·) be the solution of a pointwise type func-
tional differential equation (9). Let’s define an infinite-dimensional vector func-
tion κ(t) = {xγ(t)}γ∈Z2 , t ∈ R, where xγ(t) = x(η(γ)(t)), γ ∈ Z

2. Then,
by virtue of the functional differential equation (9), the following system of
equalities will be fulfilled

ẋγ(t) =
2

∑

l=1

αγlxγlγ(t)−
2

∑

l=1

(αγl + βγl)xγ(t) +
2

∑

l=1

βγlxγ−1

l
γ(t)

+φ(xγ(t)), ∀γ ∈ Z
2, for almost all t ∈ R, (12)

and the vector function κ(t) = {xγ(t)}γ∈Z2 , t ∈ R will be the solution of the
infinite-dimensional differential equation (7). On the other hand, the vector
function κ(·) defined in a such way satisfies the boundary condition (8). The
theorem is proved.
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3.2. Existence and uniqueness theorems of the solution for the dual
pair “function-operator”

We transform the functional differential equation of pointwise type (10) from
the considered dual pair. We replace the time so that the deviations of the
argument become integer, and the characteristic τ is considered as a parameter

˙̄x(t) = τ [αx̄(t+ 1)− (α+ β)x̄(t) + βx̄(t− 1) + φ(x̄(t))],

for almost all t ∈ R.

Such an equation was investigated in the monograph [9] with minimal restric-
tions on the potential π(·) in the form of the Lipschitz condition (quasi-linear
potentials).

Let the potential φ satisfy the Lipschitz condition with the constant Lφ.
Consider a transcendental equation with respect to two variables τ ∈ (0,+∞)
and µ ∈ (0, 1)

2Cφτ
(

µ−1 + 1
)

= lnµ−1, (13)

where
Cφ = max

{

α+ β;Lφ

}

.

The set of solutions of the equation (13) is described by the functions µ1(τ),
µ2(τ), given in Fig. 1.

To study the existence and uniqueness of solutions of pointwise type func-
tional differential equations, we propose their localization in the spaces of func-
tions majored by functions of a given exponential growth with the power as a
parameter

Ln
µC

(0)(R)=

{

z(·) : z(·) ∈ C(0) (R,Rn) , sup
t∈R

‖z(t)µ|t|‖Rn < +∞
}

,

‖z(·)‖(0)µ =sup
t∈R

‖z(t)µ|t|‖Rn , µ ∈ (0, 1). (14)

We formulate a theorem of the existence and uniqueness of a solution for the
induced functional differential equation (9).

Theorem 3 ([9]). Let the potential φ satisfy the Lipschitz condition with
the constant Lφ. Then for any initial values a ∈ R, t̃ ∈ R and characteristics
τ > 0 satisfying the condition

0 < τ < τ̂ ,
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τ

µ

1

µ̂

τ̂

µ1(τ )

µ2(τ )

0

Figure 1: Graphs of functions µ1(τ), µ2(τ).

in the space L1
µC

(0)(R), ∀µ, µτ ∈ (µ1(τ), µ2(τ)), for the functional differential
equation (9) there exists a unique solution x(t), t ∈ R such that it satisfies
the initial condition x(t̃) = a. Such a solution, as an element of the space
L1
µC

(0)(R), continuously depends on the initial value a ∈ R, the characteristic
τ and the potential φ(·).

Theorem 3 not only guarantees the existence of a solution but also sets
a limit on its possible growth in time t. Moreover, for each 0 < τ < τ̂
spaces L1

( τ
√

µ2(τ)−ε)
C(0)(R) for small ε > 0 is much narrower than the spaces

L1

( τ
√

µ1(τ)+ε)
C(0)(R). The theorem guarantees the existence of a solution in

narrower spaces and uniqueness in wider spaces. This property of solutions si-
multaneously with the Theorem 2 on the one-to-one correspondence of soliton
solutions to solutions of a family of induced functional differential equations un-
derlies the proof of the existence and uniqueness theorems of soliton solutions,
which will be given below.

Theorem 3 allows reformulation in terms of traveling wave type solutions
(soliton solutions) for the original finite difference analogue of the parabolic
equation (3). To do this, in the space K1

Z2 , we define a family of Hilbert sub-
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spaces K1
Z22µ, µ ∈ (0, 1)

K1
Z22µ =







κ : κ ∈ K1
Z2 ;

∑

γ∈Z2

|xγ |2µ2|γ| < +∞







, |γ|= |(i, j)|= |i| + |j|

with the norm
‖κ‖Z22µ =

[

∑

γ∈Z2

|xγ |2µ2|γ|
]
1

2 .

Theorem 4. Let the potential φ satisfy the Lipschitz condition with the
constant Lφ. Then for any initial values γ̄ ∈ Z

2, a ∈ R, t̄ ∈ R and characteristic
τ > 0 satisfying the condition

0 < τ < τ̂ ,

for the initial infinite-dimensional system of differential equations (3) there is
a unique soliton solution κ(t) = {yγ(t)}γ∈Z2 , t ∈ R (solution of the boundary
value problem (7)-(8)) with the characteristic τ such that it satisfies the initial
condition yγ̄(t̄) = a, for any parameter µ, µτ ∈ (µ1(τ), µ2(τ)). Values of the
vector function

κ(t) = {yγ(t)}γ∈Z2

for any t ∈ R belong to the space K1
Z22µ, and the function

ρ(t) = ‖κ(t)‖2µ
belongs to the space L1

µC
(0)(R). Such a solution continuously depends on the

initial value a ∈ R, the characteristic τ and the potential φ(·).

Proof. By Theorem 3, for any initial value a ∈ R, t̃ ∈ R in the space
L1
µC

(0)(R), ∀µ, µτ ∈ (µ1(τ), µ2(τ)) for the functional differential equation (9)
there exists a unique solution x(t), t ∈ R such that it satisfies the initial con-
dition x(t̃) = a. Then by Theorem 2, vector-function κ(t) = {yγ(t)}γ∈Z2 ,
yγ(t) = x(η(γ)(t)) is a solution of the boundary value problem (7)-(8) (a soli-
ton solution). Let a, γ̄, t̄ be given. If we chose t̃ = η(γ̄)(t̄), the initial condi-
tion yγ(t̄) = a will be met. It remains to show that κ(t) ∈ K1

Z22µ, ∀t ∈ R

and ρ(·) ∈ L1
µC

(0)(R), ∀µ, µτ ∈ (µ1(τ), µ2(τ)). For an arbitrary t ∈ R and
∀µ,∀µ̄, µτ , µ̄τ ∈ (µ1(τ), µ2(τ)), µ < µ̄ taking into account the evaluation of
|η(γ)(t)| ≤ |γ|+ |t|, let’s have the following estimations

‖κ(t)‖Z22µ =
[

∑

γ∈Z2

|yγ(t)|2µ2|γ|
]
1

2 =
[

∑

γ∈Z2

|x(η(γ)(t) )|2µ2|γ|
]
1

2
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=
[

∑

γ∈Z2

|x(η(γ)(t) )|2 µ̄2|γ|

(

µ

µ̄

)2|γ|
]
1

2

≤
[

∑

γ∈Z2

|x(η(γ)(t) )|2 µ̄2(|γ|+|t|) µ̄−2|t|

(

µ

µ̄

)2|γ|
]
1

2

≤
[

∑

γ∈Z2

|x(η(γ)(t) )|2 µ̄2|η(γ)(t) | µ̄−2|t|

(

µ

µ̄

)2|γ|
]
1

2

≤ ‖x(·)‖(0)µ̄ µ̄−|t|
[

∑

γ∈Z2

(

µ

µ̄

)2|γ|
]
1

2 .

Since the group Z
2 is commutative (polynomial growth) and µ

µ̄ < 1, the sum is
finite and equal to some A. We finally get the estimate

‖κ(t)‖Z22µ ≤ A ‖x(·)‖(0)µ̄ µ̄−|t|, ∀t ∈ R. (15)

It follows from the obtained estimate that for ∀µ, ∀µ̄, µτ , µ̄τ ∈ (µ1(τ), µ2(τ)),
µ < µ̄, for the vector function κ(·), the conditions κ(t) ∈ K1

Z22µ hold for

any t ∈ R and ρ(·) ∈ L1
µ̄C

(0)(R). It follows that ∀µ, µτ ∈ (µ1(τ), µ2(τ)) the

conditions κ(t) ∈ K1
Z22µ are valid for any t ∈ R and ρ(·) ∈ L1

µC
(0)(R). The

existence of a soliton solution is proved. It remains to prove its uniqueness.
Let the vector function κ(·) be a soliton solution (solution of the boundary

value problem (7)-(8)) and satisfy the conditions: yγ̄(t̄) = a, κ(t) ∈ K1
Z22µ,

∀t ∈ R and ρ(·) ∈ L1
µC

(0)(R), ∀µ, µτ ∈ (µ1(τ), µ2(τ)). Then the function
x(t) = ye(t), ∀t ∈ R will be the solution of the induced functional differential
equation (9) and satisfies the initial condition x(t̃) = a, t̃ = η(γ̄)(t̄). Moreover,
from the condition ρ(·) ∈ L1

µC
(0)(R) it follows that x(·) ∈ L1

µC
(0)(R). Then by

Theorem 3, such a solution x(·) of the equation (9) is the only one, whence the
uniqueness of the soliton solution follows. The theorem is proved.

3.3. Canonical dual pair “function-operator” as a dual pair with the
simplest operator

In the previous section, we studied the existence and uniqueness of a soliton
solution, as well as for the dual pair (g|GZ2) the relationship of soliton solutions
of an infinite-dimensional ordinary differential equation with the right-hand side
GZ2 and solutions of a family of induced functional differential equations with
the right side of g. The question is to identify a dual pair with the simplest
operator GZ2 among the dual pairs with the same function g.
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For the group Γ = Z, by γ1 we denote the generator, where γ1 = 1. Consider
a one-dimensional finite difference analog of a parabolic equation

˙̄yγ(t) = α[ȳγ1γ − ȳγ ] + β[ȳγ−1

1
γ − ȳγ ] + φ(ȳγ), (16)

ȳγ ∈ R, ∀γ ∈ Z, for almost all t ∈ R.

Let us rewrite the system (16) in a different form

˙̄yγ(t) = αȳγ1γ − (α+ β)ȳγ + βȳγ−1

1
γ + φ(ȳγ), (17)

ȳγ ∈ R, ∀γ ∈ Z, for almost all t ∈ R,

Definition 5. We will say that the solution {ȳγ(·)}γ∈Z of the system (16)
defined for all t ∈ R has a traveling wave type (soliton solution) if there exists
τ > 0, independent of t and γ, that for all γ ∈ Z and t ∈ R the following
equality is satisfied

yγ(t+ τ) = yγlγ(t), l = 1, 2. (18)

The constant τ will be called the characteristic of the traveling wave.

Let us formulate the boundary value problem (17)-(18) in operator form.
By K1

Z
we denote the space of sequences with elements κ = {xγ}γ∈Z, xγ ∈ R,

endowed with the Tychonoff topology. We define the linear operator A, the
nonlinear operator F and the group of shift operators T = {Tγ̂ : γ̂ ∈ Z, acting
continuously from the space K1

Z
into itself according to the following rule: for

any γ, γ̂ ∈ Z, κ ∈ K1
Z
, κ = {xγ}γ∈Z

(Aκ)γ = αx̄γlγ − (α+ β)x̄γ + βx̄γ−1

l
γ , (F(κ))γ = φ(x̄γ),

Tγ̂{x̄γ}γ∈Z = {x̄γγ̂}γ∈Z.

We define the cyclic group Q =< q̌ >, q̌(t) = t+ τ , as well as the epimorphism
η̄ : Z → Q, where η̄(γ1) = q̌ for the generator γ1 of the group Z. Let us
introduce the notation GZ = Ā+ F̄.

The boundary value problem (17)-(18) has the following equivalent operator
representation

κ̇(t) = GZ(κ), for almost all t ∈ R. (19)

κ(η(γ1)(t)) = Tγ1κ(t), ∀t ∈ R. (20)

On the left side of the equation (19) there is the Gateaux derivative. As a
solution of an infinite-dimensional differential equation (19) is called every vec-
tor function κ(t) = {xγ(t)}γ∈Z, t ∈ R, each coordinate of which is given by



SOLITON SOLUTIONS... 581

an absolutely continuous function, and the vector function itself satisfies this
equation for almost all t ∈ R.

Since γ1 is the generator of the group Z, the system (19)-(20) is equivalent
to the system

κ̇(t) = GZ(κ), for almost all t ∈ R, (21)

κ(η(γ̂)(t)) = Tγ̂κ(t), ∀γ̂ ∈ Z, ∀t ∈ R. (22)

The condition (22), which provides a traveling wave condition (soliton solution),
means that time shift is equal to space shift. It is not difficult to notice that the
operator GZ is permuted with the shift operators Tγ̂ , γ̂ ∈ Z, i.e. for any γ̂ ∈ Z

there is the equality Tγ̂GZ = GZTγ̂ .

If for the system (21)-(22) construct an induced pointwise type functional
differential equation using the procedure given after the equation (9), then we
get the equation (10). The right-hand side of such an equation is also given by
the function g. In this case, we will get a dual pair of “function-operator” of
the form (g|GZ). Such a dual pair is called canonical. It is a dual pair with the
same function g and the simplest operator GZ.

For such a dual pair, the existence and uniqueness theorem for the induced
functional differential equation coincides with Theorem 3. The theorem of
existence and uniqueness of a soliton solution for the system (17) is similar to
Theorem 4. To formulate it in the space K1

Z
, we define a family of Hilbert

subspaces K1
Z2µ, µ ∈ (0, 1)

K1
Z2µ =







κ : κ ∈ K1
Z;

∑

γ∈Z

|xγ |2µ2|γ| < +∞







, |γ| = |(i, j)| = |i|+ |j|

with the norm

‖κ‖Z2µ =
[

∑

γ∈Z

|xγ |2µ2|γ|
]
1

2 .

Theorem 6. Let the potential φ satisfy the Lipschitz condition with the
constant Lφ. Then for any initial values γ̄ ∈ Z, a ∈ R, t̄ ∈ R and characteristic
τ > 0 satisfying the condition

0 < τ < τ̂ ,

for the initial infinite-dimensional system of differential equations (17) there
is a unique solution κ(t) = {yγ(t)}γ∈Z, t ∈ R of traveling wave type (soliton
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solution) with characteristic τ such that it satisfies the initial condition yγ̄(t̄) =
a, for any parameter µ, µτ ∈ (µ1(τ), µ2(τ)). Values of the vector function

κ(t) = {yγ(t)}γ∈Z

for any t ∈ R belong to the space K1
Z2µ, and the function

rho(t) = ‖κ(t)‖2µ

belongs to the space L1
µC

(0)(R). Such a solution continuously depends on the
initial value a ∈ R, the characteristic τ and the potential φ(·).

Proof. The proof repeats verbatim the proof of Theorem 4. The only dif-
ference is that everywhere the group Z

2 should be replaced by the group Z.

3.4. Bounded soliton solutions

Bounded soliton solutions occupy a special place among soliton solutions. By
virtue of Theorems 2-6, bounded soliton solutions correspond to bounded so-
lutions of the induced functional differential equation. Let us proceed to the
study of bounded solutions of a family of induced pointwise type functional
differential equation (10)

ẋ(t) = αx(t+ τ)− (α+ β)x(t) + βx(t− τ) + φ(x(t)), for almost all t ∈ R,

in which the parameter of the family is the characteristic τ of the soliton solu-
tion.

To begin with, we describe stationary solutions. There are two such solu-
tions

x(t) ≡ 0, x(t) ≡ △, t ∈ R.

The equation under consideration has a number of symmetries. Due to the
autonomy of the equation and the theorem of the existence and uniqueness of
the solution (Theorem 3), the solution space is invariant with respect to the
time shift of solutions. Moreover, due to the one-dimensionality of the phase
space, every periodic solution is stationary. Therefore, non-stationary solutions
are strictly monotonic.
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4. Numerical construction of bounded soliton solutions

4.1. Approximation of the solution of a functional differential
equation defined on the line by solutions of a initial-boundary

value problem with expanding intervals of the definition

On the basis of Theorem 3 we are going to formulate a proposition on the
approximation of solutions of an initial-boundary value problem defined on the
whole line by solutions of the initial-boundary value problem defined on the
interval [−k, k] as k → +∞. We consider the initial-boundary value problem
on the whole line BR = R

ẋ(t) = f(t, x(t+ n1), . . . , x(t+ ns)), t ∈ R, (23)

x(t̄) = x̄, t̄ ∈ R, x̄ ∈ R
n (24)

and for each k ∈ Z+ the initial-boundary value problem on the finite interval
BR = [−k, k]

ẋ(t) = f(t, x(t+ n1), . . . , x(t+ ns) ), t ∈ [−k, k] (25)

ẋ(t) = ϕ(t), t ∈ R\[−k, k], ϕ(·) ∈ Ln
1L∞(R), (26)

x(t̄) = x̄, t̄ ∈ R, x̄ ∈ R
n, (27)

where nj ∈ R, j = 1, . . . , s.

Theorem 7. ([13]) If, for µ ∈ ∩(0, 1), the inequality

M2

s
∑

j=1

µ−|nj| < lnµ−1 (28)

is satisfied, and (µ1, µ2) is the maximum interval of solutions of the inequality
(28) then for any x̄ ∈ R

n, ϕ(·) ∈ Ln
1L∞(R) the solution x̂(·) of the initial value

problem (23)-(24), as an element of the space Ln
µC

(0)(R), is approximated by
solutions x̂k(·) of the initial-boundary value problem (25)–(27) as k → +∞.
Moreover, for any arbitrarily small ε, 0 < ε < µ2 − µ1 there exists Cfϕε such
that the following estimate takes place

‖x̂(·)− x̂k(·)‖(0)µ ≤ Cfϕε

(

µ1

µ2 − ε

)k

.
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4.2. Numerical experiments

Next, the results of the computational experiments on the study of boundary
value problems for systems of functional differential equations of pointwise type
(FDEPT) using OPTCON-F software will be presented. The software com-
plex OPTCON-F is designed to obtain a numerical solution of boundary value
problems, parametric identification problems and optimal control for dynam-
ical systems described by FDEPT [18]. The proposed technology for solving
boundary value problems is based on the Ritz method and spline collocation
approaches. To solve the problem we discretized system trajectories on the grid
with a constant step and formulate the generalized residual functional, includ-
ing both weighted residuals of the original differential equation and residuals of
boundary conditions.

Let us consider the FDEPT of the following form

ẋ(t) = αx(t+ τ)− (α+ β)x(t) + βx(t− τ) + φ(x(t)), t ∈ R, (29)

where α, β ∈ R, τ,△ ∈ R+, and

φ(x) =















0, if x < 0
1−exp(−x2)
1+exp(−x2)

, if 0 ≤ x ≤ △/2
exp(−(x−delta/2)2)−1
exp(−(x−delta/2)2)+1

+ 1−exp(−(delta/2)2)
1+exp(−(delta/2)2)

, otherwise.

Using a time-variable transformation the equation (29) can be rewritten in
the form of the following first order equation:

ż(t) = τ(αz(t + 1)− (α+ β)z(t) + βz(t− 1) + φ(z(t))).

Under this equation, we have the following real parameters: α, β, τ,△. In the
following example, for a given system, we consider such parameter values that
conditions of the existence theorem are satisfied.

Example

We consider dynamical system in the following form:

ż(t) = 0.1(z(t + 1)− 0.5z(t) − 0.5z(t − 1) + φ(z(t))),

t ∈ R,

initial condition:

z(0) = c.

(30)
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In this case, α = 1, β = −0.5, τ = 0.1,△ = 10, and the equation (13) has on
the interval (0, 1) two solutions with approximate values 0.0588 and 0.6771 (the
exact values is expressed in terms of the Lambert W-function).

Taking into account the impossibility of considering the numerical solution
of the system on an infinite interval, we introduce the parameter k and the
corresponding family of expanding initial-boundary value problems

ż(t) = 0.1(z(t + 1)− 0.5z(t) − 0.5z(t − 1) + φ(z(t))),

t ∈ [−k, k],

boundary condition:

ż(t) = 0, t ∈ (−∞,−k] ∪ [k,+∞),

initial condition:

z(0) = c.

(31)

According to Theorem 7, the solution of the system (31) converges (according
to the metric of the space Ln

µC
(0)(R) with µ ∈ (µ1(τ), µ2(τ))) to the solution

of the system (30) as k → ∞.
Since the equation (29) is autonomous, the solution space of such equation

is invariant with respect to time-variable shifts. Therefore, it suffices to consider
a family of solutions of the initial problem (30) with a value of z(0) from zero
to the value of △. Figure 2 shows the integral curves for different values of the
parameter c = z(0) for both the system (31) and the original system (30).

Note that Fig. 2 shows a complete family of bounded solutions (up to the
above-mentioned transformation), but at the same time, for some initial condi-
tions there are only unbounded solutions.

5. Conclusion

There were two important assumptions in the Manhattan lattice model under
consideration.

First, the number of vertices in the lattice is considered to be large enough,
and the procedures for regulating flows in the lattice are uniform throughout the
lattice. Therefore, we can consider the lattice complete in all directions. The
completeness of the lattice and the unity of flow control procedures determine
the spatial uniformity of the system (the right part of the considered infinite-
dimensional ordinary differential equation is permutable with a group of shift
operators), and with it they guarantee the presence of a rich family of soliton
solutions.
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Figure 2: Graphs of bounded solution for various c.

Second, a high level of aggregation of flow characteristics, without detailing
flows in directions.

When passing to the consideration of incomplete lattices (lattices with
boundaries), the spatial homogeneity of the system is lost (the right part of
the considered infinite-dimensional ordinary differential equation is not per-
mutable with a group of shift operators), which leads to a narrowing of the
class of soliton solutions, or even their absence. In this case, it is necessary
to expand the concept of traveling wave type solutions to quasi-traveling wave
type solutions (soliton solutions with a defect). If solutions (absolutely contin-
uous) of the induced family of pointwise type functional differential equations
correspond to soliton solutions in the homogeneous model, then in the inho-
mogeneous model, quasi-traveling waves (soliton solutions with a defect) will
correspond to impulse solutions of the induced family of functional differential
equations. This approach was implemented for a finite difference analogue of
the wave equation in one plastic deformation problem about longitudinal vi-
brations in an inhomogeneous infinite rod and the heat conduction equation in
one problem on transportation [8, 10, 11, 12, 14, 15].

The detailing of flows in directions leads to a complication of the structure of
the lattice itself and requires other new approaches to describe soliton solutions.
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