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Abstract: In this research paper, we propose a numerical technique based
on Chebyshev wavelets of the second kind for the investigation of numerical
integrations. For this purpose, collocation points and the basis functions of
Chebyshev wavelets of the second kind have been utilized. The results of nu-
merical experiments are presented, and are compared with exact solutions to
confirm the good accuracy of the proposed scheme.
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1. Introduction

Numerical analysis is a branch of mathematics, which is used to find the ap-
proximate solutions of various problems arising in real life problems. Numerical
integration plays a significant role in numerical analysis. For numerical integra-
tion, several techniques have been developed, like Trapezoidal rule, Simpson’s
rule, Weddle rule, etc. Nowadays wavelets are powerful mathematical tools for
solving differential and integral equations numerically. Numerous wavelets fam-
ilies have been established such as Haar wavelets, Hermite wavelets, Chebyshev
wavelets, Legendre wavelets, etc. Wavelets based techniques are simple as it
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converts the difficult problems into a system of algebraic equations, which are
solved with the aid of any classical techniques like matrix method, Crammer
rule, Gauss-Jordan method, Gauss-Seidel method, Gauss-elimination method.
From the literature, we have concluded that wavelets based techniques are ac-
curate and efficient. Efficient algorithms based on Haar wavelets have been
utilized for solving differential and integral equations in [1, 2, 3, 4, 5, 6, 7].
In [8], an accurate algorithm has been developed using Hermite wavelets to
find the numerical solution of fractional Jaulent-Miodek equation associated
with energy dependent Schrodinger potential. An efficient technique based on
Hermite wavelets has been utilized for solving two- dimensional hyperbolic tele-
graph equation in [9]. An operational matrix of integration based on Hermite
wavelets has been established for solving nonlinear singular initial value prob-
lems in [10]. In [11], Chebyshev polynomials have been used to find the solution
of two dimensional linear and nonlinear integral equations of the second kind.
In [12], Chebyshev wavelets of the second kind has been utilized to find the nu-
merical solutions of fractional nonlinear Fredholm integro-differential equations.
In [13], for the solutions of second-order differential equations with singular and
Bratu type equations, an efficient technique based on second kind Chebyshev
wavelets has been established. Chebyshev wavelets based operational matrix of
integration has been developed for solving differential equations in [14]. Frac-
tional order differential equations have been solved with the aid of Chebyshev
wavelets of the second kind in [15]. In [16], Chebyshev wavelets of the sec-
ond kind has been used to find the solutions of convection diffusion equation.
Lane-Emden type differential equations have been solved with the help of sec-
ond kind Chebyshev wavelets in [17]. Chebyshev wavelets based technique has
been established for solving partial differential equations with telegraph type
boundary conditions in [18].

This research paper is organized as follows: In Section 2, introduction of
Chebyshev wavelets of the second kind is presented. Proposed numerical scheme
based on Chebyshev wavelets of the second kind for the evaluation of integration
has been presented in Section 3. In Section 4, some numerical experiments have
been performed to illustrate the accuracy of the proposed numerical scheme.
Conclusion is presented in Section 5.

2. Chebyshev wavelets of the second kind

In the last few decades, wavelets based numerical techniques have been used
extensively for the solution of various problems of science, engineering and tech-
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nology. Wavelets constitute a family of functions constructed from dilation and
translation of a single function called the mother wavelet. When the dilation
parameter a and the translation parameter b vary continuously, we have the
following family of continuous wavelets

ψa,b(t) = |a|1/2ψ
( t− b

a

)

, a, b ∈ R, a 6= 0. (1)

The second kind wavelets ψ(n,m) = ψ(k, n,m, t) have four arguments; k is

any positive integer, n = 1, 2, 3, 4, ..., 2(k−1) ; m is the degree of second kind
Chebyshev polynomials and t is normalized time. It is defined on the interval
[0, 1) as follows:

ψn,m(t) =

{

2k/2Ũm(2kt− 2n+ 1), n−1
2k−1

≤ t < n
2k−1

,

0, otherwise,
(2)

where

Ũm(t) =

√

2

π
Um(t). (3)

Here, m = 0, 1, 2, 3, ...,M − 1 and M is a fixed integer. In relation given by (1)
is for orthonormality. Here Um(t) are the second kind Chebyshev polynomials
of degree m which are orthogonal with respect to the weight function ω(t) =
√

(1− t2) on the interval [−1, 1], and satisfy the satisfy the following recursive
formula: U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)−Um−1(t), m = 1, 2, 3, 4, ....
Note that in case of second kind Chebyshev wavelets, the weight function has
to be dilated and translated as ωn(t) = ω(2kt− 2n+ 1).

3. Function approximation

A function f(x) ∈ L2(R) defined on the interval [0, 1) may be expanded by
second kind Chebyshev wavelets as:

f(x) =

∞
∑

n=1

∞
∑

m=0

cn,mψn,m(x), (4)

where

cn,m = 〈f(x), ψn,m(x)〉L2
ω [0,1)

=

∫ 1

0
f(x)ψn,m(x)ωn(x)dx, (5)



382 Preeti, I. Singh

in which the symbol 〈...〉 denotes the inner product in L2
ω[0, 1). If the infinite

series is truncated, then it can be written as:

f(x) =

2k−1

∑

n=1

M−1
∑

m=0

cn,mψn,m(x) ∼= CTψ(x), (6)

where C and ψ are matrices of order 2k−1M × 1 and are written as:

CT = [c1,0, ..., c1,M−1, ..., c2k−1 ,0, ..., c2k−1 ,M−1], (7)

and

ψ(x) = [ψ1,0(x), ..., ψ1,M−1(x), ..., ψ2k−1 ,0(x), ..., ψ2k−1 ,M−1(x)]
T . (8)

For k = 1 and M = 6, the first six basis functions are given as:































































































ψ1,0(x) =
2√
π
,

ψ1,1(x) =
2√
π
(4x− 2),

ψ1,2(x) =
2√
π
(16x2 − 16x+ 3),

ψ1,2(x) =
2√
π
(64x3 − 96x2 + 40x− 4),

ψ1,2(x) =
2√
π
(256x4 − 512x3 + 336x2 − 80x+ 5),

ψ1,2(x) =
2√
π
(1024x5 − 2560x4 + 2304x3 − 896x2 + 140x− 6).

(9)

4. Proposed technique for numerical integration

Split the interval of integration into n equal parts, each of length β−α
n such

that [α = x0, x1, x2, ..., xn = β]. Approximate the unknown function f(x) into
a series of basis functions of Chebyshev wavelets of the second kind as:

f(x) =

2k−1

∑

n=1

M−1
∑

m=0

cn,mψn,m(x). (10)
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Putting the different values of x, we obtain

f(x0) =
2k−1

∑

n=1

M−1
∑

m=0

cn,mψn,m(x0), (11)

f(x1) =

2k−1

∑

n=1

M−1
∑

m=0

cn,mψn,m(x1), (12)

f(x2) =

2k−1

∑

n=1

M−1
∑

m=0

cn,mψn,m(x2), (13)

...

f(xn) =
2k−1

∑

n=1

M−1
∑

m=0

cn,mψn,m(xn). (14)

After solving the above system of algebraic equations, we obtain wavelets coef-
ficients. Integrating (10) both sides with respect to x, from 0 to 1, we obtain

∫ 1

0
f(x)dx =

2k−1

∑

n=1

M−1
∑

m=0

cn,m

∫ 1

0
ψn,m(x)dx. (15)

After substituting the values of wavelets coefficients, we obtain the required
value of integration.

5. Numerical tests

In this section, some numerical examples have been performed to illustrate the
accuracy of the proposed method. The obtained numerical results are compared
with exact solutions. If the limit of integration is [c, d], then change the limits
of integration from [c, d] to [0, 1] as follows.

Consider the integration of the form:

I =

∫ d

c
J(x)dx, (16)

where c and d are constants. Applying the transformation

x = CX +D, (17)
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where C andD are unknowns constants that satisfy the conditions x = c,X = 0
and x = d,X = 1. Therefore from (17), we obtain

{

c = C(0) +D,

d = C(1) +D.
(18)

Solving these equations, we obtain C = d− c and D = c. From (17), we obtain

{

x = (d− c)X + c,

dx = (d− c)dX.
(19)

Substituting these values in (16), we obtain

I = (d− c)

∫ 1

0
J((d − c)X + c)dX, (20)

This implies

I = (d− c)

∫ 1

0
R(X)dX, (21)

where R(X) = J((d− c)X + c).

Example 1: Consider the integration

∫ 1

0
J(x)dx, J(x) =

√

x2 + 1. (22)

The exact solution is 1√
2
+ 1

2 log |1 +
√
2|. Divide the interval [0, 1] into 6 equal

sub-intervals, each of length h = 1−0
6 . The corresponding subintervals are

[0, 1/6], [1/6, 2/6], ..., [5/6, 1]. Expand the given function J(x) =
√
x2 + 1 into

a series of Hermite wavelets basis functions by taking k = 1,M = 7 as follows:

√

x2 + 1 =

6
∑

m=0

C1,mψ1,m(x). (23)

Substituting the values of nodes x = 0, 1/6, 2/6, 3/6, 4/6, 5/6, 1 in (23), we
obtain

1 = C1,0ψ1,0(0) + C1,1ψ1,1(0) + C1,2ψ1,2(0) + C1,3ψ1,3(0) + C1,4ψ1,4(0)

+ C1,5ψ1,5(0) + C1,6ψ1,6(0), (24)
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√

37

36
= C1,0ψ1,0(1/6) + C1,1ψ1,1(1/6) + C1,2ψ1,2(1/6) + C1,3ψ1,3(1/6)

+ C1,4ψ1,4(1/6) + C1,5ψ1,5(1/6) + C1,6ψ1,6(1/6), (25)

√

40

36
= C1,0ψ1,0(2/6) + C1,1ψ1,1(2/6) + C1,2ψ1,2(2/6) + C1,3ψ1,3(2/6)

+ C1,4ψ1,4(2/6) + C1,5ψ1,5(2/6) + C1,6ψ1,6(2/6), (26)

√

45

36
= C1,0ψ1,0(3/6) + C1,1ψ1,1(3/6) + C1,2ψ1,2(3/6) + C1,3ψ1,3(3/6)

+ C1,4ψ1,4(3/6) + C1,5ψ1,5(3/6) + C1,6ψ1,6(3/6), (27)

√

52

36
= C1,0ψ1,0(4/6) + C1,1ψ1,1(4/6) + C1,2ψ1,2(4/6) + C1,3ψ1,3(4/6)

+ C1,4ψ1,4(4/6) + C1,5ψ1,5(4/6) + C1,6ψ1,6(4/6), (28)

√

61

36
= C1,0ψ1,0(5/6) + C1,1ψ1,1(5/6) + C1,2ψ1,2(5/6) + C1,3ψ1,3(5/6)

+ C1,4ψ1,4(5/6) + C1,5ψ1,5(5/6) + C1,6ψ1,6(5/6), (29)

and

√
2 = C1,0ψ1,0(1) + C1,1ψ1,1(1) + C1,2ψ1,2(1) + C1,3ψ1,3(1)

+ C1,4ψ1,4(1) + C1,5ψ1,5(1) + C1,6ψ1,6(1). (30)

Solving the above system of equations, we obtain the wavelets coefficients. The
wavelet coefficients are 1.0304e+000, 9.3524e−002, 1.9739e−002, −1.7899e−
003, −3.0005e − 005, 3.7710e − 005, −4.6792e − 006.

Integrating (23) one time w.r.t. x, from 0 to 1, we obtain

∫ 1

0

√

x2 + 1dx =

6
∑

m=0

C1,m

∫ 1

0
ψ1,m(x)dx. (31)

Substituting the values of wavelet coefficients into (31), we have

∫ 1

0

√

x2 + 1dx = 1.147793929573018, (32)
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which is nearly same as the exact solution.

Example 2: Consider the integration

∫ 1

0
J(x)dx, J(x) =

1

2x+ 1
. (33)

Divide the interval [0, 1] into 7 equal sub-intervals, each of length h = 1−0
7 .

Let [0, 1] divided into [0, 1/7], [1/7, 2/7], ..., [6/7, 1]. Expand the given function
J(x) = 1

2x+1 into a series of Hermite wavelets basis functions by taking k =
1,M = 8 as follows:

1

2x+ 1
=

7
∑

m=0

C1,mψ1,m(x). (34)

Substituting the values of nodes x = 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1 in (34), we
obtain

1 = C1,0ψ1,0(0) + C1,1ψ1,1(0) + C1,2ψ1,2(0) + C1,3ψ1,3(0)

+ C1,4ψ1,4(0) + C1,5ψ1,5(0) + C1,6ψ1,6(0) + C1,7ψ1,7(0), (35)

7

9
= C1,0ψ1,0(1/7) + C1,1ψ1,1(1/7) + C1,2ψ1,2(1/7) + C1,3ψ1,3(1/7)

+ C1,4ψ1,4(1/7) + C1,5ψ1,5(1/7) + C1,6ψ1,6(1/7) + C1,7ψ1,7(1/7), (36)

7

11
= C1,0ψ1,0(2/7) + C1,1ψ1,1(2/7) + C1,2ψ1,2(2/7) + C1,3ψ1,3(2/7)

+ C1,4ψ1,4(2/7) + C1,5ψ1,5(2/7) + C1,6ψ1,6(2/7) + C1,7ψ1,7(2/7), (37)

7

13
= C1,0ψ1,0(3/7) + C1,1ψ1,1(3/7) + C1,2ψ1,2(3/7) + C1,3ψ1,3(3/7)

+ C1,4ψ1,4(3/7) + C1,5ψ1,5(3/7) + C1,6ψ1,6(3/7) + C1,7ψ1,7(3/7), (38)

7

15
= C1,0ψ1,0(4/7) + C1,1ψ1,1(4/7) + C1,2ψ1,2(4/7) + C1,3ψ1,3(4/7)

+ C1,4ψ1,4(4/7) + C1,5ψ1,5(4/7) + C1,6ψ1,6(4/7) + C1,7ψ1,7(4/7), (39)
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7

17
= C1,0ψ1,0(5/7) + C1,1ψ1,1(5/7) + C1,2ψ1,2(5/7) + C1,3ψ1,3(5/7)

+ C1,4ψ1,4(5/7) + C1,5ψ1,5(5/7) + C1,6ψ1,6(5/7) + C1,7ψ1,7(5/7), (40)

7

19
= C1,0ψ1,0(6/7) + C1,1ψ1,1(6/7) + C1,2ψ1,2(6/7) + C1,3ψ1,3(6/7)

+ C1,4ψ1,4(6/7) + C1,5ψ1,5(6/7) + C1,6ψ1,6(6/7) + C1,7ψ1,7(6/7), (41)

and

1

3
= C1,0ψ1,0(1) + C1,1ψ1,1(1) + C1,2ψ1,2(1) + C1,3ψ1,3(1) + C1,4ψ1,4(1)

+ C1,5ψ1,5(1) + C1,6ψ1,6(1) + C1,7ψ1,7(1). (42)

Solving the above system of equations, we obtain the wavelets coefficients. The
wavelet coefficients are 4.6048e−001, −1.7125e−001, 2.8219e−002, −9.8477e−
003, 2.6375e − 003, −7.0293e − 004, 1.7418e − 004 and −4.3544e − 005.

Integrating (34) one time w.r.t. x, from 0 to 1, we obtain

∫ 1

0

1

2x+ 1
dx =

7
∑

m=0

C1,m

∫ 1

0
ψ1,m(x)dx. (43)

Substituting the values of wavelet coefficients into (43), we obtain

∫ 1

0

1

2x+ 1
dx = 0.549322254145040, (44)

which is nearly same as the exact solution.

6. Conclusion

It is concluded that the Chebyshev wavelets of the second kind are powerful nu-
merical tools for the evaluation of integration. To get the necessary accuracy,
the number of collocation points may be raised. The concept of the present
method can be extended for the evaluation of two- and three- dimensional in-
tegrations arising in various applications of sciences and engineering.
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