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Abstract: In this work, the problem of anomalous filtration and solute trans-
port in a two-zone medium with a stripe like source is posed and numerically
solved. In one zone, anomalous convective diffusion transfer occurs, and in
the other - only diffusion. Here, the influence of anomaly on the transport
characteristics is also estimated.
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1. Introduction

Note that mathematical modeling is widely used to study the processes of filtra-
tion and solute transport in porous media. However, the existing mathematical
models are far from being perfect, a number of known phenomena do not have
their own model description [20].

In [21], numerical simulation of problems of two-phase filtration in fractured-
porous media is carried out using a dual porosity model with a highly inhomo-
geneous permeability coefficient. A system of equations is given for the case
of two-phase filtration without taking into account capillary and gravitational
forces, which is a coupled system of equations for pressure and saturation in a
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porous medium with a system of cracks. Various options for setting the flow
functions between a porous medium and fractures are considered. The numer-
ical implementation for approximating the velocity and pressure is based on
the finite element method. To discretize the saturation equation by means of
the method of introducing artificial diffusion, the classical Galerkin method
with upwind approximation is used. The results of numerical calculations for a
model problem using various flow functions are presented.

An analysis of diffusion in a complex medium shows that the usual diffusion
equation based on Fick’s law cannot model the anomalous nature of diffusion
mass transfer observed in field and laboratory experiments. New mathematical
models of diffusion transport, different from Fick’s law, have been proposed
and confirmed in the literature. This article gives examples of equations that
can be used to describe anomalous mass transfer and discusses some important
properties of these equations. Two modes revealed anomalous diffusion. One
regime, called subdiffusion, is characterized by a slower propagation of the
concentration front, so that the square of the front propagation distance requires
more time than in the case of classical Fickian diffusion [10].

Elementary particles under the influence of various force fields of different
nature make a complex movement. The trajectories of these particles reproduce
geometric objects of complex structure [1].

Nigmatullin [16, 17, 18] was the first to derive the equation of fractional
diffusion for media of fractal geometry. Taking into account the comb structure
of the medium, he obtained an equation with a fractional derivative with respect
to time, simulating the process of “slow” diffusion (subdiffusion). A similar
approach was used by Fomin et al. [11] for modeling diffusion in a fractured-
porous medium. In a recent study based on the dual porosity model [2], the
partial advective diffusion equation in a fractured porous aquifer was derived
analytically. An expression for the coefficient before the fractional derivative
is obtained and all parameters that can affect its value are determined. It was
also shown that the order of the fractional derivative in the advection-diffusion
equation depends on the fractal dimension of the pores. The application of
these equations for modeling mass transfer in a fractured-porous medium can
be found in [9, 12].

In the process of fluid filtration, the equilibrium relationship between the
filtration velocity and the pressure gradient can be broken. When filtering
inhomogeneous fluids, the substance (or particles) contained in the fluid can
linger in the pore space, which leads to a change in the porosity and permeability
characteristics of the porous medium, primarily its permeability and porosity
[20].
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Two-zone media are very common in macroscopically inhomogeneous me-
dia. In them, some macroscopic zones may have reservoir properties that differ
from the rest of the zone. In such media, the processes of filtration and solute
transport proceed with the manifestation of internal mass transfer between dif-
ferent zones. This significantly changes the overall pattern of filtration and
mass transfer. The project executors previously solved some problems of filtra-
tion and solute transport in two-zone media [4, 5, 7, 8, 13, 14, 19]. Here, the
problem of substance transfer is considered in a similar setting, but with al-
lowance for anomalous effects. The transfer equations here, unlike the previous
ones, have fractional derivatives. Therefore, the object can be considered as a
macroscopically inhomogeneous fractal medium.

In this paper, we consider the filtration and solute transport with a stripe-
like source in a two-zone medium with a fractal structure.

2. Statement of the problem

We consider a medium consisting of two zones, i.e.
R1 {0 ≤ x < ∞, 0 ≤ y ≤ l}, R2 {0 ≤ x < ∞, l ≤ y ≤ ∞} (Fig.1). Initially, re-
gions R1 and R2 are filled with fluid without substance.

In R1, the system of equations for the solute transport has the form

∂c

∂t
= D1

∂β1c

∂xβ1
+D2

∂β2c

∂yβ2
−

∂ (vxc)

∂x
−

∂ (vyc)

∂y
. (1)

The process of solute transport to R2 can be described by the diffusion
equation in the form

∂c

∂t
= D3

∂β3c

∂yβ3
, (x, y) ∈ R2, (2)

where c is the concentration of solid particles in the fluid, vx, vy are the compo-
nents of the filtration velocity, D1, D2, D3 are the longitudinal and transverse
diffusion coefficients, β1, β2, β3 are the derivative orders, t is the time.

The anomalous filtration velocity is defined as [3]

vx = −
k1
µ

∂γ1p

∂xγ1
, vy = −

k2
µ

∂γ2p

∂yγ2
, (3)

where µ is the viscosity coefficient of the substance, k = const is the perme-
ability coefficient. The continuity equation of the flow of a compressible fluid
through a porous medium can be written as [2]

∂(ρm)

∂t
+ div(ρ

→
v ) = 0, (4)
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where m is the porosity coefficient, ρ is the density of the liquid.
We use the equations of state of an elastic fluid and an elastic porous

medium [2]
ρ = ρ0(1 + β6(p− p0)), m = m0 + βc(p − p0), (5)

where βl is the volume compression coefficient of the liquid, βm is the elasticity
coefficient of the medium, ρ0 is the initial density of the liquid, p0 is the initial
pressure.

Substituting (3), (5) into (4), we can obtain the piezoconductivity equation
with a fractional derivative

∂p

∂t
= χ1

∂γ1+1p

∂xγ1+1
+ χ2

∂γ2+1p

∂yγ2+1
, (6)

where χ1 =
k1
µβ∗

, χ2 =
k2
µβ∗

is coefficient of piezoconductivity, β∗ is coefficient of
elasticity of the medium, γ1, γ2 are orders of the fractional derivatives.

Fig.1. Scheme of filtration and solute transport in a two-zone medium

The initial and boundary conditions of the problem have the form

c (0, x, y) = 0, 0 ≤ x < ∞, 0 ≤ y < ∞, (7)

c (t, 0, y) = 0, 0 ≤ y < δ1l, δ2l < y ≤ l, δ1 6= δ2, δ1, δ2 < 1, (8)

c (t, 0, y) = c0, c0 = const, δ1l ≤ y ≤ δ2l, δ1, δ2 < 1, (9)

∂c

∂y
(t, x, 0) = 0, 0 ≤ x < ∞, (10)

∂c

∂x
(t, 0, y) = 0, 0 ≤ y < δ1l, δ2l < y ≤ l, δ1 6= δ2, δ1, δ2 < 1, (11)
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∂c

∂x
(t,∞, y) = 0, 0 ≤ y < ∞, (12)

∂c

∂y
(t, x, y) = 0 , y = ∞, 0 ≤ x < ∞ (13)

p (0, x, y) = p0, p0 = const, (14)

p (t, 0, y) = pc, pc > p0, pc = const, δ1l ≤ y ≤ δ2l, δ1, δ2 < 1, (15)

∂p

∂y
(t, x, 0) = 0, 0 ≤ x < ∞, (16)

∂p

∂y
(t, x, l) = 0, 0 ≤ x < ∞, (17)

∂p

∂x
(t, 0, y) = 0, 0 ≤ y < δ1l, δ2l < y ≤ l, δ1 6= δ2, δ1, δ2 < 1, (18)

∂p

∂x
(t,∞, y) = 0, 0 ≤ y ≤ l. (19)

c|y=l+0 = c|y=l−0 , 0 ≤ x < ∞, (20)

D2
∂β2−1c

∂yβ2−1

∣

∣

∣

∣

y=l+0

= D3
∂β3−1c

∂yβ3−1

∣

∣

∣

∣

y=l−0

, 0 ≤ x < ∞. (21)

3. Solution method

Problem (1) - (19) is solved by the finite difference method. To do this, we
construct a grid in the area R1

⋃

R2, ωh1h2τ = ω+
h1h2τ

⋃

ω−
h1h2τ

, where

ω1
h1h2τ =

{

(tk, xi, yj) , tk = τk, xi = ih1, yj = jh2 , k = 0, K,

i = 0, 1, ... , j = 0, 1, ..., J, τ = T/K, h2 = l/J} ,

ω2
h1h2τ =

{

(tk, xi, yj) , tk = τk, xi = ih1, yj = h2j, k = 0, K,

i = 0, 1, ... , j = J, J + 1, ..., τ = T/K} .

In this grid: h1 - grid step in direction x, h2 - grid step in direction y in R1

and R2, τ - grid step in time, T - maximum time during which the process is
studied, K - number of grid intervals of t , J - the number of grid intervals of
y in R1.

Instead of functions c ( t, x, y), v (t, x, y), and p(t, x, y), we will consider net-
work functions whose values at nodes ( tk, xi, yj), respectively, will be denoted
by cki j , v

k
i j , and pki j.
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Consider the case 0 < γ1, γ2 ≤ 1, 1 < β1, β2, β3 ≤ 2.
On grid ωh1h2τ , we approximate the first equation of system (1)-(2) as

follows, [6, 15],

c
k+1/2
i j −cki j

0,5 τ

= D1

Γ(3−β1)h
β1
1

∑i−1
l=0

(

cki−(l−1), j − 2cki−l, j + cki−(l+1), j

)

×
(

(l + 1)2−β1 − l2−β1

)

+ D2

Γ(3−β2)h
β2
2

∑j−1
l=0

(

cki, j−(l−1) − 2cki, j−l + cki, j−(l+1)

)

×
(

(l + 1)2−β2 − l2−β2

)

−
(vx)

k
i jc

k
i j−(vx)

k
i−1, jc

k
i−1,j

h1
−

(vy)
k
i jc

k
i j−(vy)

k
i, j−1c

k
i,j−1

h2
,

(22)

i = 1, I − 1, j = 1, J − 1, k = 0, K − 1,

ck+1
i j −c

k+1/2
i j

0,5 τ

= D1

Γ(3−β1)h
β1
1

∑i−1
l=0

(

c
k+1/2
i−(l−1), j − 2c

k+1/2
i−l, j + c

k+1/2
i−(l+1), j

)

×
(

(l + 1)2−β1 − l2−β1

)

+ D2

Γ(3−β2)h
β2
2

∑j−1
l=0

(

c
k+1/2
i, j−(l−1) − 2c

k+1/2
i, j−l + c

k+1/2
i, j−(l+1)

)

×
(

(l + 1)2−β2 − l2−β2

)

−
(vx)

k+1/2
i j c

k+1/2
i j −(vx)

k+1/2
i−1, j c

k+1/2
i−1,j

h1
−

(vy)
k+1/2
i j c

k+1/2
i j −(vy)

k+1/2
i, j−1 c

k+1/2
i,j−1

h2
,

(23)

i = 1, I − 1, j = 1, J − 1, k = 0, K − 1,

c
k+1/2
i j −cki j

0,5 τ

= D3

Γ(3−β3)h
β3
2

∑i−1
l=0

(

cki, j−(l−1) − 2cki, j−l + cki, j−(l+1)

)

×
(

(l + 1)2−β3 − l2−β3

)

,

(24)

i = 0, I, j = J, J1 − 1, k = 0,K − 1

ck+1
i j −c

k+1/2
i j

0,5 τ

= D3

Γ(3−β3)h
β3
2

∑i−1
l=0

(

c
k+1/2
i, j−(l−1) − 2c

k+1/2
i, j−l + c

k+1/2
i, j−(l+1)

)

×
(

(l + 1)2−β3 − l2−β3

)

,

(25)

i = 0, I, j = J, J1 − 1, k = 0,K − 1.
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For the filtration rate component, we use the following schemes

(vx)
k+1/2
i j = −

k1
µ

p
k+1/2
i+1 j − γ1p

k+1/2
i, j

(2− γ1)h
γ1
1

, (26)

i = 0, I − 1, j = 0, J, k = 0, K − 1,

(vy)
k
i j = −

k2
µ

pki j+1 − γ2p
k
i, j

(2− γ2)h
γ2
2

, (27)

i = 0, I, j = 0, J − 1, k = 0, K − 1,

(vy)
k+1
i j = −

k2
µ

pk+1
i j+1 − γ2p

k+1
i, j

(2− γ2)h
γ2
2

, (28)

i = 0, I, j = 0, J − 1, k = 0, K − 1.

Equation (4) is approximated as

p
k+1/2
i j −pki j

0,5 τ

= χ1

Γ(3−γ1)h
γ1
1

∑i−1
l=0

(

pki−(l−1), j − 2pki−l, j + pki−(l+1), j

)

×
(

(l + 1)2−γ1 − l2−γ1
)

+ χ2

Γ(3−γ2)h
γ2
2

∑j−1
l=0

(

pki, j−(l−1) − 2pki, j−l + pki, j−(l+1)

)

×
(

(l + 1)2−γ2 − l2−γ2
)

,

(29)

i = 1, I − 1, j = 1, J − 1, k = 0,K − 1,

pki j−p
k+1/2
i j

0,5 τ

= χ1

Γ(3−γ1)h
γ1
1

∑i−1
l=0

(

p
k+1/2
i−(l−1), j − 2p

k+1/2
i−l, j + p

k+1/2
i−(l+1), j

)

×
(

(l + 1)2−γ1 − l2−γ1
)

+ χ2

Γ(3−γ2)h
γ2
2

∑j−1
l=0

(

p
k+1/2
i, j−(l−1) − 2p

k+1/2
i, j−l + p

k+1/2
i, j−(l+1)

)

×
(

(l + 1)2−γ2 − l2−γ2
)

,

(30)

i = 1, I − 1, j = 1, J − 1, k = 0,K − 1.

The initial and boundary conditions are approximated as

cki,j = 0, i = 0, I, j = 0, J , k = 0, (31)

cki,j = 0, i = 0, 0 ≤ y < δ1l, δ2l < y ≤ l, δ1 6= δ2, δ1, δ2 < 1, (32)
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cki,j = c0, i = 0, , k = 0,K, δ1l ≤ y ≤ δ2l, δ1, δ2 < 1, (33)

cki,j+1 − cki,j
h2

= 0, i = 0,I, j = 0, k = 0,K, (34)

cki+1,j − cki,j
h1

= 0, (35)

i = 0, k = 0,K, 0 ≤ y < δ1l, δ2l < y ≤ l, δ1 6= δ2, δ1, δ2 < 1,

cki,j − cki−1,j

h1
= 0, i = I, j = 0, J1, k = 0,K, (36)

cki,j − cki,j−1

h2
= 0, i = 0,I, j = J1, k = 0,K, (37)

pki,j = p0 = const, i = 0, I, j = 0, J , k = 0, (38)

pki,j = pc, i = 0, j = J/2, k = 0,K, δ1l ≤ y ≤ δ2l, δ1, δ2 < 1, (39)

pki,j+1 − pki,j
h2

= 0, i = 0,I, j = 0, k = 0,K, (40)

pki,j − pki,j−1

h2
= 0, i = 0,I, j = J, k = 0,K, (41)

pki+1,j − pki,j
h1

= 0, (42)

i = 0, k = 0,K, 0 ≤ y < δ1l, δ2l < y ≤ l, δ1 6= δ2, δ1, δ2 < 1,

pki,j − pki−1,j

h1
= 0, i = I, j = 0, J , k = 0,K, (43)

cki,J+0 = cki,J−0, i = 0, 1, ..., k = 0,K, (44)

D2

cki,J − (β2 − 1)cki,J−1

(2− (β2 − 1))h
(β2−1)
2

= D3

cki,J+1 − (β3 − 1)cki,J

(2− (β3 − 1))h
(β3−1)
2

, (45)

where I, J1 are sufficiently large for which equation ckI J1 = 0 approximately
holds.

The sequence of calculations is as follows: first, p is determined from the
difference scheme (29) on the (k + 1/2)-layer, then from (26), (28) the com-
ponents of the filtration rate are calculated, after that c is determined on the
(k + 1/2)-layer from the difference equations (22). Then, on the (k + 1)-layer,
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p is determined from the difference scheme (30), the filtration velocity compo-
nents are calculated from (27), after that, c is determined on the (k + 1)-layer
from the difference equations (25).

For equations (24), (25), we introduce the following notation

Ek
1 =

(vx)
k
i j c

k
i j − (vx)

k
i−1, j c

k
i−1,j

h1
, Ek

2 =
(vy)

k
i j c

k
i j − (vy)

k
i, j−1 c

k
i,j−1

h2
,

G1 =
0, 5τD1

Γ (3− β1) h
β1
1

, G2 =
0, 5τD2

Γ (3− β2) h
β2
2

,

Sk
1 =

i−1
∑

l=0

(

cki−(l−1), j − 2cki−l, j + cki−(l+1), j

)(

(l + 1)2−β1 − l2−β1

)

,

Sk
2 =

j−1
∑

l=0

(

cki, j−(l−1) − 2cki, j−l + cki, j−(l+1)

)(

(l + 1)2−β2 − l2−β2

)

.

Taking into account these notations, equations (22) and (23), respectively,
have the form

c
k+1/2
i j = cki j +G1S1 +G2S2 − 0, 5τ

(

Ek
1 + Ek

2

)

, (46)

ck+1
i j = c

k+1/2
i j +G1S1 +G2S2 − 0, 5τ

(

E
k+1/2
1 +E

k+1/2
2

)

. (47)

The concentration field is determined step by step from (46),(47).

4. Results and discussion

The following values of the initial parameters were used in the calculations:
k1 = 2 · 10−13 m1+γ1 , k2 = 10−13 m1+γ2 , µ = 5 · 10−3 Pa · s, β∗ = 3 · 10−8 Pa−1,
pc = 5 · 105 Pa, p0 = 105 Pa and various values of D1 = 5 · 10−5 mβ1/s,
D2 = 10−5 mβ2/s, and D3 = 10−5 mβ3/s. Some results are shown in Figs 2-4.
Figure 2 shows the distribution of concentration at different points in time.
Figure 3 shows the concentration surfaces as the values of β3 decrease from 2.
A comparison of the results shows that a decrease in β3 from 2 accelerates the
diffusion process in the R2 zone. At the same time, with a decrease in β3 from
2 in the zone R1 one can notice a decrease in the concentration values. Figure
4 shows the change in the concentration profile for different values of γ1 and
γ2. The results obtained show that a decrease in the values of γ1 and γ2 from
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1 leads to an increase in the effects of anomalous filtration and the diffusion
process in both zones.

Fig 2. Profiles of c at, γ1 = 0.8 , γ2 = 0.8; β1 = 1.8, β2 = 1.8; β3 = 1.6;
t = 5000 s(),t = 7500 s(b), t = 10000 s (c).
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Fig 3. Profiles of c at, t = 10000 s, γ1 = 0.8 ,γ2 = 0.8; β1 = 1.8, β2 = 1.8;
β3 = 2(), β3 = 1.8 (b), β3 = 1.6 (c)
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Fig 4. Profiles of c at t = 10000 s, β3 = 1.6 , β1 = 2 ,β2 = 2; γ1 = 1, γ2 = 1
(), γ1 = 0, 9, γ2 = 0, 9 (b), γ1 = 0, 8, γ2 = 0, 8 (c),
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5. Conclusion

The calculation results show that a decrease in the derivative order in the
filtration velocity equation from 1 leads to an increase in concentration effects.
A decrease in the order of the derivative in the diffusion term from 2 leads to
an “acceleration” of the diffusion process. The concentration profiles are also
shown with decreasing values from 2. Comparison of the results shows that
a decrease from 2 accelerates the diffusion process in the zone. At the same
time, with a decrease from 2 in the zone, one can notice a decrease in the
concentration values.
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