ALGEBRAIC INTEGERS OF PURE QUARTIC EXTENSIONS

Abstract

Let $\mathbb{Q}$ denote the field of rational numbers and $\mathbb{K}$ be a pure quartic extension, that is, $\mathbb{K}=\mathbb{Q}(\sqrt[4]{d})$, where $d$ is a square free integer. In this work, we present an integral basis, norm, trace and the discriminant of $\mathbb{K}$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 1
Year: 2023

DOI: 10.12732/ijam.v36i1.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. A. Andrade and J. C. Interlando, Construction of even-dimensional lattices of full diversity, Int. J. Appl. Math., 32, No 2 (2019), 325-332. DOI: 10.12732/ijam.v32i2.12.
  2. [2] A. A. Andrade, L. S. Facini and L. C. Esteves, Algebraic integers of certain cubic extensions, Brazilian Journal of Development, 8, No 8 (2022), 56768- 56786. DOI: 10.34117/bjdv8n8-127.
  3. [3] C. C. T. Watanabe, J. C. Belfiore, E. D. Carvalho and J. V. Filho, E8- lattice via the cyclotomic field Q(24), Int. J. Appl. Math., 31, No 1 (2018), 63–71. DOI: 10.12732/ijam.v31i1.6.
  4. [4] V. C. S. Rodrigues, Lattices of Rank 4 in Number Fields, Master Degree Thesis, S˜ao Paulo State University, S˜ao Jos´e do Rio Preto - SP, Brazil, 2001.