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Abstract: Semi-delta-open sets (briefly δs-open sets) are a new type of open
sets introduced by the authors. The purpose of this paper is to investigate the
topological concepts like closure operator, derived set and interior of a set in
term of these sets and study their properties. Further, it is shown that the
family of semi-delta-open sets forms a topology. In addition, characterizations
of semi-delta-open (briefly δs-open), semi-delta-closed (briefly δs-closed) and
semi -delta-continuous functions (briefly δs-functions) have been discussed.
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1. Introduction

Many researchers have carried out extensive research on open sets and their
new versions in topology for many years. Levine [1] was the first to introduce
the concept of semi-open sets. Moreover, the notions of semi-closed set and
semi-continuity was also proposed by him. A subset L of the space (G, τ) is
termed as semi-open if L ⊆ Cl(Int(L)). The complement of a semi-open set is
termed as semi-closed set. For a subset L of the space (G, τ), the intersection
of all semi-closed supersets of L is termed as semi-closure of L and is denoted
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by sCl(L), also sCl(L) = L∪Int(Cl(L)). Levine’s work leads many topologists
to use semi-open sets as a substitute to open sets.

Later on, Veličko [2] introduced the notions of δ-continuity and θ-continuity.
Along with these terms, he proposed and studied the concepts of δ-closure and
θ-closure. δ-closure (respectively θ-closure) of any subset L of a space (G, τ)
is defined as the set of all g in G such that Int(Cl(O)) ∩ L 6= ∅ (respectively
Cl(O) ∩ L 6= ∅) for each open set O in G containing g. δ-interior (respectively
θ-interior) of any subset L of a space (G, τ) is defined as the set of all such
g ∈ G such that Int(Cl(O)) ⊆ L (respectively Cl(O) ⊆ L) for some open set O
in G containing g. A well-established result is that the collection of all δ-open
sets forms a topology called semi-regular topology. In 2008, Renuka et al. [3]
worked on γ-spaces using δγ- open sets.

Latif [4, 5] explored the various properties of δ-open sets and concepts of
δ−D-sets. Recently, Hassan et al. [6] made known the new version of open sets
called θs-open sets and studied various terms, such as θs-continuous, θs-open
and θs-closed functions.

This paper is organized as follows: Definitions and results that have pre-
viously been proposed are included in Section 2 and will be applied to sup-
port various findings in the next sections. Having introduced this definition of
δs-open sets by authors [9], Section 3 deals with the properties of δs-closure
operator, δs-derived set and δs-interior, and we show that the family of δs-open
sets forms a topology. In Section 4 characterizations of δs-open, δs-closed, and
δs-continuous functions have been discussed.

2. Preliminaries

Throughout this paper, (G, τ) and (H, τ∗) (briefly G and H) represent topo-
logical spaces. We denote the closure and the interior of any subset L of space
G by Cl(L) and Int(L), respectively.

Definition 1. [1] Let G be a topological space. A subset L of G is termed
as semi-open set if L ⊆ Cl(Int(L)) and semi-closed set if Int(Cl(L)) ⊆ L.

Definition 2. [7] Let L be a subset of topological space G. Then its semi-
closure is the intersection of all semi-closed supersets of L, denoted by sCl(L).
Here sCl(L) is the smallest semi-closed set containing L. Also, sCl(L) = L ∪
Int(Cl(L)).
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For the following lemma, one may refer to Navalagi and Gurushantanavar
[8].

Lemma 3. For subsets L and M of space G, the following holds for the
semi-closure operator:

(a) L ⊂ sCl(L) ⊂ Cl(L).

(b) sCl(L) ⊂ sCl(M), if L ⊂ M .

(c) sCl(sCl(L)) = sCl(L).

(d) sCl(L ∩M) ⊂ sCl(L) ∩ sCl(M).

(e) sCl(L) ∪ sCl(M) ⊂ sCl(L ∪M).

(f) L is semi-closed if and only if sCl(L) = L.

Definition 4. [9] Let G be a topological space and L ⊆ G. Then L is said
to be semi-delta-open if for every g ∈ L there exists an open set O containing
g such that Int[sCl(O)] ⊆ L.

Definition 5. [9] Let G be a topological space then its subset L is termed
as semi-delta -neighbourhood (briefly δs-neighbour-hood) of g if there exist a
δs-open set O in G such that g ∈ O ⊆ L.

Definition 6. [9] Semi-delta-closure (briefly δs-closure) of a subset L of a
space G is the intersection of all semi-delta-closed supersets of L. We denote
semi-delta closure of a set L by Clδs(L).

Theorem 7. [9] Let (G, τ) be a topological space. A point g ∈ G is said
to be in δs-closure of L if Int(sCl(O))∩L 6= ∅ for any open set O containing g.

Theorem 8. [9] Every δs-open set is a δs-neighbourhood of each of its
points.

Theorem 9. [9] Let G be a topological space. Then the following state-
ments hold:

(a) Empty set and space G are δs-closed.

(b) Arbitrary intersections of δs-closed sets are δs-closed.
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(c) Finite union of δs-closed sets are δs-closed.

Definition 10. [9] Let G be a topological space. A point g ∈ G is said
to be semi-delta-limit point (briefly δs-limit point) of a subset L of space G if
for every δs-open set O containing g,O ∩ (L− {g}) 6= ∅. The set of all δs-limit
points of L is called semi-delta-derived set (briefly δs-derived set) of L and is
denoted by Dδs(L).

Theorem 11. [9] For any subset L of space G, Clδs(L) = L ∪Dδs(L).

Definition 12. [9] A point g in G is termed as semi-delta- interior point
(briefly δs-interior point) of L ⊆ G, if there exist a δs-open set O containing g

such that O ⊆ L. The set of all δs-interior points of L is called δs-interior of L
and is denoted by Intδs(L).

Theorem 13. [9] For subsets L and M of topological space G, the follow-
ing results hold true.

(a) [G− Intδs(L)] = Clδs(G− L).

(b) L is δs-open if and only if L = Intδs(L).

(c) Intδs [Intδs(L)] = Intδs(L).

(d) Intδs(L) = [L−Dδs(G− L)].

(e) Intδs(L) ∪ Intδs(M) ⊆ Intδs(L ∪M).

3. Properties of δs-Closure, δs-Derived set and δs-Interior

The properties of semi-delta-closure, semi-delta-derived set, and semi-delta-
interiors of a set are the focus of this section. We also show that the family of
semi-delta-open sets forms a topology on any non empty set G.

Theorem 14. Let G be a topological space and L ⊆ G. Then

(a) Cl(L) ⊆ Clδs(L).

(b) If L is δs-closed, then L is closed.
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Proof. (a) To prove Cl(L) ⊆ Clδs(L), let g ∈ Cl(L) and let O be an open
set containing g. Since g ∈ Cl(L), O ∩L 6= ∅. Also, O ⊆ Int(sCl(O)), we have
Int(sCl(O)) ∩ L 6= ∅. Thus, g ∈ Clδs(L).
(b) Let L be a δs-closed set. Then Clδs(L) = L. Thus by part (a), Cl(L) = L.
Hence, L is closed.

Theorem 15. Let G be a topological space. Then

(a) If L ⊆ M ⊆ G, then Clδs(L) ⊆ Clδs(M).

(b) For each subset L,M ⊆ G, Clδs(L) ∪ Clδs(M) = Clδs(L ∪M).

(c) For each subset L ⊆ G, Clδs(L) is a closed in (G, τ).

(d) For each L ∈ τδs , Clδs(L) = Cl(L).

(e) g ∈ Clδs(L) if and only if for each δs-open subset O containing g,
O ∩ L 6= ∅.

Proof. (a) For each open set O containing g, δs-closure of a subset L of
G is defined as Clδs(L) = {g ∈ G : L ∩ Int(sCl(O)) 6= ∅} ⊆ {g ∈ G :
M ∩ Int(sCl(O))} = Clδs(M), as L ⊆ M .

(b) By part (a), we have Clδs(L) ∪ Clδs(M) ⊆ Clδs(L ∪ M). Let g 6∈
Clδs(L) ∪ Clδs(M). Then there are two open sets O,V ∈ τ such that g ∈ O ∩
V, Int(sCl(O))∩L = ∅ and Int(sCl(V ))∩M = ∅. Thus, we have g ∈ O∩V ∈ τ

and
Int(sCl(O ∩ V )) ∩ (L ∪M)

= (Int(sCl(O ∩ V )) ∩ L) ∪ (Int(sCl(O ∩ V )) ∩M)
⊆ (Int(sCl(O)) ∩ L) ∪ (Int(sCl(V )) ∩M)
= ∅ ∪ ∅
= ∅.

It follows that g 6∈ Clδs(L ∪M).

(c) To show that G−Clδs(L) ∈ τ , let g ∈ G−Clδs(L), then there is O ∈ τ

containing g and Int(sCl(O)) ∩ L = ∅. Thus, O ∩ Clδs(L) = ∅. It follows that
G− Clδs(L) ∈ τ .

(d) By Theorem 14 (a), for any subset L of G, Cl(L) ⊆ Clδs(L). Conversely,
suppose to the contrary that there is g ∈ Clδs(L) ∩ (G − Cl(L)). Since G −
Cl(L) ∈ τ , we must have Int(sCl(G−Cl(L)))∩L 6= ∅. Choose g ∈ Int(sCl(G−
Cl(L))) ∩ L. Since L ∈ τδs , then (G− Cl(L)) ∩ L 6= ∅, a contradiction.
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(e) Assuming that for every δs−open set O containing g, O ∩ L 6= ∅ and
Int[sCl(O)] ∩ L 6= ∅ since O ⊆ Int(sCl(O)). This implies that g ∈ Clδs(L).
Conversely, suppose to the contrary that a point g has δs-neighbourhood which
does not intersect L. Then the complement of this δs-neighbourhood is δs-
closed superset of L, which does not contain g. Since δs-closure of any subset
L of space G is the intersection of all δs-closed supersets of L, this implies L

does not contain g. This completes the proof.

Theorem 16. Let G be a topological space. Then family of all semi-
delta-open sets (briefly τδs) forms a topology on G.

Proof. By using Theorem 9(a), we can easily see that ∅, G ∈ τδs . To show
that arbitrary union of δs-open sets is δs-open, let {Lα : α ∈ ∆} be a family of
δs-open sets. This implies that {G − Lα : α ∈ ∆} is a family of δs-closed sets.
Now, by Theorem 9(b), G − ∪{Lα : α ∈ ∆} = ∩{G − Lα : α ∈ ∆} is δs-closed
set. Hence, ∪{Lα : α ∈ ∆} ∈ τδs .

To show that finite intersection of δs-open sets is δs-open, let L,M ∈ τδs ,
this implies thatG−L and G−M are δs-closed. By Theorem 9(c), G−(L∩M) =
(G− L) ∪ (G−M) are δs-closed sets. Thus, L ∩M ∈ τδs .

Theorem 17. Let G be a topological space and L ⊆ G. Then L ∈ τδs if
and only if for each g ∈ L, there is O ∈ τ such that g ∈ O ⊆ Int(sCl(O)) ⊆ L.

Proof. Let L ∈ τδs and g ∈ L. ThenG−L is δs-closed. Also, g 6∈ Clδs(G−L)
since g 6∈ G−L and hence there is O ∈ τ and Int(sCl(O))∩ (G−L) = ∅, which
means that g ∈ O ⊆ Int(sCl(O)) ⊆ L. Conversely, suppose that for each
g ∈ L, there is O ∈ τ such that g ∈ O ⊆ Int(sCl(O)) ⊆ L and suppose on the
contrary that L 6∈ τδs , then G− L is not δs- closed and Clδs(G − L) 6= G− L.
Choose g ∈ Clδs(G − L) − (G − L). Since g ∈ L, there is O ∈ τ such that
g ∈ O ⊆ Int(sCl(O)) ⊆ L. Thus, g ∈ O ∈ τ and Int(sCl(O)) ∩ (G − L) = ∅.
Hence, g 6∈ Clδs(G− L), a contradiction.

Remark 18. Since the collection of all semi-delta-open sets of (G, τ)
form a topology with respect to τ , this topological space will be denoted by
(G, τδs , τ).

Remark 19. Since every semi-delta open set is open, so τδs ⊆ τ . Converse
may not be true in general. This can be seen by the following example.
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Example 20. Let (R, τ) be a topological space with τ = {∅,R,N,Qc,N ∪
Qc}, then Qc ∈ τ but Qc 6∈ τδs .

The following Theorem 21 for semi-delta-open sets is an analogue of the
lemma given by Mršević and Andrijević [10] for delta- open sets.

Theorem 21. Let (G, τ) be a topological space and L ⊆ G, then the set
Clθ(L) is closed in (G, τδs) and thus in (G, τ).

Proof. Let g ∈ Clδs(Clθ(L)). Then for every open set O containing g,
we have g ∈ Int(sCl(O)) ∩ Clθ(L). Since g ∈ sCl(O) ⊆ Cl(O), which means
that Cl(O) is a closed neighbourhood of g. Hence, Cl(O) ∩ L 6= ∅. Thus,
g ∈ Clθ(L).

Theorem 22. For subsets L and M of space G, the following statements
hold:

(a) D(L) ⊆ Dδs(L), where D(L) is derived set of L.

(b) If L ⊆ M, then Dδs(L) ⊆ Dδs(M).

(c) Dδs(L) ∪Dδs(M) = Dδs(L ∪M) and Dδs(L ∩M) ⊆ Dδs(L) ∩Dδs(M).

(d) [Dδs(Dδs(L))− L] ⊆ Dδs(L).

(e) Dδs [Dδs(L) ∪ L] ⊆ Dδs(L) ∪ L.

Proof. (a) The derived set of a subset L of space G is defined as D(L) =
{ g ∈ G : O ∩ (L − {g}) 6= ∅, for each open set O in G containing g}. Since
O ⊆ sCl(O) for any open set O in G, this implies that O ⊆ Int[sCl(O)]. Thus,
D(L) ⊆ {g ∈ G : Int[sCl(O)] ∩ (L − {g}) 6= ∅, for each open set O in G
containing g} = Dδs(L).

In view of Remark 19, proofs for the parts (b), (c), (d), (e) respectively, are
obvious.

Remark 23. If Dδs(L) = Dδs(M), then it does not imply that L = M .
This can be seen by the following example.

Example 24. Let G = {a, b, c} with topology τ = {∅, G, {a},
{a, b}, {b}, {b, c}}. Here τδs= τ . Take L = {a} and M = {c}. Then Dδs(L) =
Dδs(M) = ∅ but L 6= M .
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Corollary 25. A subset L of space G is termed as semi-delta- closed
(briefly δs-closed) if and only if it contains all of its δs-limit points.

Proof. In view of Theorem 11, the proof is obvious.

Theorem 26. For subsets L and M of space G, the following statements
hold:

(a) If L ⊆ M, then Intδs(L) ⊆ Intδs(M).

(b) Intδs(L) is the largest δs-open set contained in L.

(c) Intδs(L ∩M) = Intδs(L) ∩ Intδs(M).

(d) L is δs- open if and only if for each g ∈ L, there exist a basic open set M
with g ∈ M such that Int(sCl(M)) ⊆ L.

(e) [G− Clδs(L)] = Intδs(G− L).

(f) For any L ⊆ G, Intδs(L) ⊆ Intδ(L).

Proof. In view of Remark 19 the proofs are obvious.

4. Semi-Delta-Open and

Semi-Delta-Continuous Functions

In this section, the characterizations of δs-open, δs-closed and δs-continuous
functions have been discussed.

Definition 27. [9] Let (G, τ) and (H, τ∗) be topological spaces. A function
f1 : (G, τ) → (H, τ∗) is termed as δs-open if f1(L) is δs-open in (H, τ∗) i.e f1(L)
is open in (H,σδs , τ

∗) for every open set L in (G, τ).

Definition 28. [9] Let (G, τ) and (H, τ∗) be topological spaces. A function
f1 : (G, τ) → (H, τ∗) is termed as δs-closed if f1(L) is δs-closed in (H, τ∗) i.e
f1(L) is closed in (H,σδs , τ

∗) for every closed set L in (G, τ).

Definition 29. [9] A function f1 : (G, τ) → (H, τ∗) is said to be δs-
continuous if for every open set L in H, f−1

1 (L) is δs-open in G i.e open in
(G, τδs , τ).
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Remark 30. Let Clδs be the closure operator in topological space (G, τδs , τ),
then the following statements hold true:

(a) A subset L of space G is δs-open relative to (G, τ) if and only if it is
open in (G, τδs , τ).

(b) A subset L of space G is δs-closed relative to (G, τ) if and only if it is
closed in (G, τδs , τ).

Theorem 31. Let (G, τ) and (H, τ∗) be topological spaces and let a
function f1 : (G, τ) → (H, τ∗). Then the following statements are equivalent.

(a) f1 is δs-open.

(b) f1(Int(L)) ⊆ Intδs(f1(L)), for every L ⊆ G.

(c) f1(L) is δs-open for every basic open set L in G.

(d) For each g ∈ G and for every open set L in G containing g, there exists
an open set O in H containing f1(g) such that Int(sCl(O)) ⊆ f1(L).

Proof. (a) =⇒ (b)
Let L ⊆ G. Note that f1(Int(L)) ⊆ f1(L) and f1(Int(L)) is δs-open. In

view of Theorem 26 (b), we have f1(Int(L)) ⊆ Intδs [f1(Int(L))] ⊆ Intδs(f1(L)).

(b) =⇒ (a)
Let L be an open set in G. Then by hypothesis, f1[Int(L)] ⊆ Intδs(f1(L)).

Since L is open, therefore Int(L) = L. Also, Intδs [f1(L)] ⊆ f1(L). This implies
that f1(L) = Intδs(f1(L)). Hence, f1(L) is δs-open in H. Thus, f1 is δs-open.

(b) =⇒ (c)
Let L be a basic open set inG. Then using hypothesis, f1(L) = f1(Int(L)) ⊆

Intδs(f1(L)) ⊆ f1(L). Now, by using Theorem 13 (b), we have f1(L) is δs-open.

(c) =⇒ (d)
Let g ∈ G and let L be an open set in G containing g. Then there exists

a basic open set M containing g such that M ⊆ L, which implies that f1(g) ∈
f1(M) ⊆ f1(L). By assumption, there exists an open set O in H containing
f1(g) such that Int(sCl(O)) ⊆ f1(M) ⊆ f1(L).

(d) =⇒ (a)
Let L be an open set in G and let g ∈ f1(L). Then there exists y ∈ L such

that f1(y) = g. By assumption, there exists an open set O in H containing



84 K. Singh, A. Gupta

g such that Int(sCl(O)) ⊆ f1(L). Hence, f1(L) is δs-open in H. Thus, f1 is
δs-open.

Theorem 32. Prove that a function f1 : (G, τ) → (H, τ∗) is δs-open if
and only if for each g ∈ G, and L ∈ τ such that g ∈ L, there exists a δs-open
set O ⊆ H containing f1(g) such that O ⊆ f1(L).

Proof. Follows immediately from Definition 27.

Theorem 33. Let f1 : (G, τ) → (H, τ∗) be δs-open function. If W ⊆ H

and F ⊆ G is a closed set containing f−1
1 (W ), then there exists a δs-closed set

K ⊆ H containing W such that f−1
1 (K) ⊆ F .

Proof. Let K = H − f1(G− F ). Since f−1
1 (W ) ⊆ F , we have f1(G− F ) ⊆

(H−W ). Since f1 is δs-open, thenK is δs- closed and f−1
1 (K) = G−f−1

1 [f1(G−
F )] ⊆ G− (G − F ) = F.

Theorem 34. Let f1 : (G, τ) → (H, τ∗) be a δs-open function and let
O ⊆ H. Then f−1

1 [Clδs(Intδs(Clδs(O)))] ⊆ Cl[f−1
1 (O)].

Proof. Cl[f−1
1 (O)] is closed in G containing f−1

1 (O). Using Theorem 33,
there exists a δs-closed set O ⊆ K ⊆ H such that f−1

1 (K) ⊆ Cl[f−1
1 (O)]. Thus,

f−1
1 [Clδs(Intδs(Clδs(O)))] ⊆ f−1

1 [Clδs(Intδs(Clδs(K)))] ⊆ f−1
1 (K) ⊆ Cl[f−1

1 (O)].

Theorem 35. Prove that a function f1 : (G, τ) → (H, τ∗) is δs-open if
and only if Int[f−1

1 (M)] ⊆ f−1
1 [Intδs(M)] for all M ⊆ H.

Proof. Necessity. Let M ⊆ H. Since Int[f−1
1 (M)] is open in G and f1 is δs-

open, then f1[Int(f
−1
1 (M))] is δs-open in H. Also, we have f1[Int(f

−1
1 (M))] ⊆

f1[f
−1
1 (M)] ⊆ M . Therefore, f1[Int(f

−1
1 (M))] ⊆ Intδs(M). Hence, Int[f−1

1 (M)] ⊆
f−1
1 [Intδs(M)].

Sufficiency. Let L ⊆ G. Then f1(L) ⊆ H. By hypothesis, we ob-
tain Int(L) ⊆ Int[f−1

1 (f1(L))] ⊆ f−1
1 [Intδs(f1(L))]. Hence, for all L ⊆ G,

f1[Int(L)] ⊆ Intδs [f1(L)]. Thus, by Theorem 31 (b), f1 is δs-open.

Theorem 36. Let f1 : (G, τ) → (H, τ∗) be a function. Then a necessary
and sufficient condition for f1 to be δs-open is that f−1

1 [Clδs(M)] ⊆ Cl[f−1
1 (M)]
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for every subset M of H.

Proof. Necessity. Assume that f1 is δs-open. Let M ⊆ H and let g ∈
f−1
1 [Clδs(M)]. Then f1(g) ∈ Clδs(M). Let O ∈ τ such that g ∈ O. Since f1
is δs-open, then f1(O) is δs-open set in H. Therefore, M ∩ f1(O) 6= ∅. Then
O ∩ f−1

1 (M) 6= ∅. Hence, g ∈ Cl[f−1
1 (M)]. Thus, f−1

1 [Clδs(M)] ⊆ Cl[f−1
1 (M)].

Sufficiency. Let M ⊆ H. Then (H − M) ⊆ H. By hypothesis, we have
f−1
1 [Clδs(H−M)] ⊆ Cl[f−1

1 (H−M)]. This implies that G−Cl[f−1
1 (H−M)] ⊆

G− f−1
1 [Clδs(H −M)]. Hence, G−Cl[f−1

1 (H −M)] ⊆ f−1
1 [H −Clδs(H −M)].

Now, by using Theorem 10 of [11], we have Int[f−1
1 (M)] ⊆ f−1

1 [Intδs(M)]. By
Theorem 35, f1 is δs-open.

Theorem 37. Let (G, τ), (H, τ∗) and (Z, λ) be topological spaces. If
f1 : (G, τ) → (H, τ∗) is δs-continuous function and g : (H, τ∗) → (Z, λ) is
continuous function then gof1 : (G, τ) → (Z, λ) is δs-continuous map.

Proof. Let V ⊆ Z be a closed set. Then Z−V is open. Then (gof1)
−1(Z−

V ) = f−1
1 (g−1(Z−V )) = f−1

1 (g−1(Z)−g−1(V )). Since g is continuous map, this
implies that g−1(V ) = M is closed in H. Since f1 is δs-continuous, therefore
f−1
1 (H −M) = f−1

1 (H)− f−1
1 (M) = G− f−1

1 (M) is δs-open in G. Hence gof1
is δs-continuous.

Theorem 38. Let f1 : (G, τ) → (H, τ∗) be a bijection. Then the following
are equivalent:

(a) f1 is δs-closed.

(b) f1 is δs-open.

(c) f−1
1 is δs-continuous.

Proof. (a) =⇒ (b)

Let O ∈ τ . Then G − O is closed in G. By assumption, f1(G − O) is
δs-closed in H. But f1(G − O) = f1(G) − f1O) = H − f1(O). Hence, f1(O) is
δs-open in H. Thus, f1 is δs-open.

(b) =⇒ (c)

Let O ⊆ G be an open set. Since f1 is δs-open. So f1(O) = (f−1
1 )−1(O) is

δs- open in H. Hence, f−1
1 is δs-continuous.
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(c) =⇒ (a)

Let L be an arbitrary closed set in G. Then G − L is open in G. Since
f−1
1 is δs-continuous, (f

−1
1 )−1(G − L) is δs-open in H. But (f−1

1 )−1(G − L) =
f1(G−L) = H−f1(L). Hence, f1(L) is δs-closed inH. Thus, f1 is δs-closed.
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