In this study, by connecting these Lucas polynomials, subordination and differential operator, we introduce and investigate a new subclasses consisting of analytic and fold symmetric bi-univalent functions in the open unit disc . We obtain the coefficient bound for and also Fekete-Szegö inequalities for this new class.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] S. Altinkaya, S. Yal¸cin, Initial coefficient bounds for a general class of
bi-univalent functions, Int. J. Anal., (2014), Article ID 867871, 4 pages.
[2] S¸. Altinkaya, S. Yal¸cin, Coefficient estimates for two new subclasses of
bi-univalent functions with respect to symmetric points, J. Func. Spaces,
(2015), Article ID 145242, 5 pages.
[3] D.A. Brannan, J. Clunie (Eds), Aspects of Contemporary Complex Analysis.
Proc. of Instructional Conference Oorganized by the London Mathematical
Society at the University of Durham, (1979) (a NATO Advanced
Study Institute) (1980), 572 pages.
[4] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Studia
Univ. Babes-Bolyai Math., 31, No 2 (1986), 70–77.
[5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass
of analytic bi-univalent functions, C. R. Math., 352, No 6 (2014),
479–484.
[6] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften,
Springer, New York, NY (1983).
[7] B.A. Frasin, M.K. Aouf, New subclasses of bi-univalent functions, Appl.
Math. Lett. 24, No 9 (2011), 1569–1573.
[8] S.G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for
analytic bi-close-to-convex functions, C. R. Math., 352, No 1 (2014), 17–
20.
[9] J.M. Jahangiri, S.G. Hamidi, Coefficient estimates for certain classes of
bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), Article ID
190560, 4 pages.
[10] G. Lee, M. Asci, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas
polynomials, J. Appl. Math., 2012 (2012), Article ID 264842.
[11] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer.
Math. Soc., 18, No 1 (1967), 63–68.
[12] W. Koepf, Coefficient of symmetric functions of bounded boundary rotations,
Proc. Amer. Math. Soc., 105, No 2 (1989), 324–329.
[13] N. Magesh, J. Yamini, Coefficient bounds for a certain subclass of biunivalent
functions, Int. Math. Forum, 8, No 27 (2013), 1337–1344.
[14] E. Netanyahu, The minimal distance of the image boundary from the origin
and the second coefficient of a univalent function in |z| < 1, Arch. Rational
Mech. Anal., 32 (1969), 100–112.
[15] C. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht,
G¨ottingen (1975).
[16] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math.,
1013 (1983), 363–372, Springer-Verlag, Heidelberg and New York.
[17] H.M. Srivastava, A.K.Mishra, P. Gochhayat, Certain subclasses of analytic
and bi-univalent functions, App. Math. Lett., 23, No 10 (2010), 1188–1192.
[18] H.M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for
a general subclass of analytic and bi-univalent functions, Filomat, 27, No
5 (2013), 831–842.
[19] H.M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefcient
boundss for a subclass of m-fold symmetric bi-univalent functions, Tbilisi
Math. J., 7, No 2 (2014), 1–10.
[20] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coeifficient estimates for a
certain subclass of analytic and bi-univalent functions, Appl. Math. Lett.,
25, No 6 (2012), 990–994.