A SPECTRAL GRADIENT PROJECTION METHOD FOR
ZEROS OF MULTI-VALUED MONOTONE FUNCTIONS
IN HILBERT SPACES

Abstract

An algorithm for zeros of single-valued monotone maps in the setting of the finite dimensional Hilbert spaces $\mathbb{R}^{n} $ is considered in the more general setting of infinite dimensional Hilbert spaces. The sequence generated from the algorithm is shown to globally converge weakly to a solution of a zero problem in any infinite dimensional real Hilbert space. For the more general multi-valued case, a modified version of the algorithm is presented and the sequence generated is shown to globally converge weakly to a solution of the multi-valued zero problem. Moreover, the algorithm does not involve computing resolvent of the monotone map.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 36
Issue: 1
Year: 2023

DOI: 10.12732/ijam.v36i1.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M.V. Solodov, B.F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: Reformulation: Nonsmooth, Piece- wise Smooth, Semismooth and Smoothing Methods, Springer, Boston, MA, USA (1998), 355-369; DOI: 10.1007/978-1-4757-6388-1 18.
  2. [2] J. Barzilai, J.M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148; DOI: 10.1093/imanum/8.1.141.
  3. [3] L. Zhang, W. Zhou, Spectral gradient projection method for solving non- linear monotone equations, J. Comput. Appl. Math., 96 (2006), 478-484; DOI: 10.1016/j.cam.2005.10.002.
  4. [4] E.G. Birgin, J.M. Martinez, M. Raydan, Spectral projected gradient meth- ods. Review and perspectives, J. Stat. Softw., 60 (2014), 1-21; DOI: 10.18637/jss.v060.i03.
  5. [5] A.B. Abubakar, P. Kumam, H. Mohammad, A note on the spectral gradi- ent projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39, 129 (2020); DOI: 10.1007/s40314-020-01151-5.
  6. [6] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, London, UK, (2010).
  7. [7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597; DOI: 10.1090/S0002-9904-1967-11761-0.
  8. [8] C.E. Chidume, C.O. Chidume, N. Djitt´e, M.S. Minjibir, Convergence the- orems for fixed points of multivalued strictly pseudocontractive mappings in Hilbert spaces, Abstr. Appl. Anal., 2013 (2013), Article ID 629468, 10 pp.; DOI 10.1155/2013/629468.
  9. [9] S.B. Nadler, Multivaled contraction mappings, Pac. J. Math., 30 (1969), 475-488; DOI: 10.2140/pjm.1969.30.475.
  10. [10] C.H. Morales, Surjectivity theorems for multi-valued mappings of accretive type, Comment. Math. Univ. Carolin., 26, No 2 (1985), 397-413.