An algorithm for zeros of single-valued monotone maps in the setting
of the finite dimensional Hilbert spaces
is
considered in the more general setting of infinite dimensional
Hilbert spaces. The sequence generated from the algorithm is shown
to globally converge weakly to a solution of a zero problem in any
infinite dimensional real Hilbert space. For the more general
multi-valued case, a modified version of the algorithm is presented
and the sequence generated is shown to globally converge weakly to a
solution of the multi-valued zero problem. Moreover, the algorithm
does not involve computing resolvent of the monotone map.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M.V. Solodov, B.F. Svaiter, A globally convergent inexact Newton method
for systems of monotone equations, In: Reformulation: Nonsmooth, Piece-
wise Smooth, Semismooth and Smoothing Methods, Springer, Boston, MA,
USA (1998), 355-369; DOI: 10.1007/978-1-4757-6388-1 18.
[2] J. Barzilai, J.M. Borwein, Two point step size gradient methods, IMA J.
Numer. Anal., 8 (1988), 141-148; DOI: 10.1093/imanum/8.1.141.
[3] L. Zhang, W. Zhou, Spectral gradient projection method for solving non-
linear monotone equations, J. Comput. Appl. Math., 96 (2006), 478-484;
DOI: 10.1016/j.cam.2005.10.002.
[4] E.G. Birgin, J.M. Martinez, M. Raydan, Spectral projected gradient meth-
ods. Review and perspectives, J. Stat. Softw., 60 (2014), 1-21; DOI:
10.18637/jss.v060.i03.
[5] A.B. Abubakar, P. Kumam, H. Mohammad, A note on the spectral gradi-
ent projection method for nonlinear monotone equations with applications,
Comput. Appl. Math., 39, 129 (2020); DOI: 10.1007/s40314-020-01151-5.
[6] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, Springer, London, UK, (2010).
[7] Z. Opial, Weak convergence of the sequence of successive approximations
for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597;
DOI: 10.1090/S0002-9904-1967-11761-0.
[8] C.E. Chidume, C.O. Chidume, N. Djitt´e, M.S. Minjibir, Convergence the-
orems for fixed points of multivalued strictly pseudocontractive mappings
in Hilbert spaces, Abstr. Appl. Anal., 2013 (2013), Article ID 629468, 10
pp.; DOI 10.1155/2013/629468.