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1. Introduction. A general solution of the degenerate Heun equation

Linear ordinary differential equations of the second order of the Heun class are
generated by the Heun equation, a fux equation with four singular points. The
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Heun equation was first investigated by K. Heun [1]. Heun equations with four
regular singular points and has the form

T ′′ (t) +

(

a3
t− a0

+
a4
t
+

a5
t− 1

)

T ′ (t) +
a1a2t− q

t(t− 1)(t− a0)
T (t) = 0, (1)

where q, aj , j = 0, 5 are number parameters, and the parameters aj , j = 1, 5
satisfy the Fuchs condition 1+a1+a2 = a3+a4+a5 which ensures the regularity
of an infinitely distant singular point.

Equation (1) represents the most general linear differential equation of the
second order of Fuchs class with four singular points: any such equation with
four singular points can be reduced to Heun equation by appropriate transfor-
mation of the independent and dependent variables. A complete classification of
differential equations of Heun class is considered in [2], and studies of problems
on eigenvalues for such classes of equations are published in [3], [4].

From equation (1), passing to the limit at a0 → 0 we get

t (1− t)T ′′ (t) + [a3 + a4 − (a3 + a4 + a5) t]T
′ (t)

−
(

a1a2 −
q

t

)

T (t) = 0. (2)

Equation (2) can be called a degenerate Goyne equation. Let us find its general
solution.

Due to the presence of an additional regular singular point, equation (2) is a
natural generalization of the hypergeometric Gauss equation. Taking this into
account and assuming a3 + a4 6∈ Z, we look for a partial solution of equation
(2) in the form

X (t) =

∞
∑

k=0

AkXk (t) =

∞
∑

k=0

AkF (a1, a2; a3 + a4 + k; t), (3)

where Ak are yet unknown coefficients, and the hypergeometric Gaussian func-
tion F (a1, a2; a3 + a4 + k; t) , satisfies the following equation

t (1− t)X ′′
k (t)

+ [(a3 + a4 + k)− (1 + a1 + a2) t]X
′
k (t)− a1a2Xk (t) = 0. (4)

Substituting (3) into equation (2) and considering equality (4), we obtain

∞
∑

k=0

Ak

[

−ktX ′
k (t) + qXk (t)

]

= 0. (5)
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By virtue of the well-known equality [5]

z
dF (b1, b2; b3; z)

dz
= (b3 − 1) [F (b1, b2; b3 − 1; z)− F (b1, b2; b3; z)]

we verify the equality

tX ′
k (t) = (a3 + a4 + k − 1) [Xk−1 (t)−Xk (t)] . (6)

Taking into account (6), equation (5) can be written as

∞
∑

k=0

Ak [−k (a3 + a4 + k − 1)Xk−1 (t)

+ (k (a3 + a4 + k − 1) + q)Xk (t) = 0. (7)

From (7) we uniquely find the expansion coefficients (3) in the form

A0 = 1, Ak+1 =
k (a3 + a4 + k − 1) + q

(k + 1) (a3 + a4 + k)
Ak, k = 0, 1, 2, ... .

Now, find the second partial solution of equation (2). After substituting
T (t) = t1−a3−a4Y (t) of equation (2), it turns into equation:

t (1− t)Y ′′ (t) + [2− a3 − a4 − (2 + a5 − a4 − a3) t]Y
′ (t)

−
[

a1a2 + a5 (1− a3 − a4)−
q

t

]

Y (t) = 0.

Using the above method, find the second partial solution of equation (2):

Y (t) = t1−a3−a4 (8)

×
∞
∑

k=0

AkF (a1 − a3 − a4 + 1, a2 − a3 − a4 + 1; 2 − a3 − a4 + k; t).

Based on (3) and (8), the general solution of equation (10) can be represented
as

T (t) = b1

∞
∑

k=0

AkF (a1, a2; a3 + a4 + k; t) + b2t
1−a3−a4 (9)

×
∞
∑

k=0

AkF (a1 − a3 − a4 + 1, a2 − a3 − a4 + 1; 2 − a3 − a4 + k; t),

where b1 and b2 are arbitrary constants.
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Thus, we have constructed a series expansion of the solutions to equation
(2) by hypergeometric functions of the form
F (a1, a2; a3 + a4 + k; t) . There are several methods of decomposition of so-
lutions of Heun equation by hypergeometric functions. For example, in [6],
[7], for this purpose a function of the form F (a1, a2; a4 − k; t) and in the
works of Svartholm [8], [9], [10] and Schmidt [11], a function of the form
F (a1 + k, a2 − k; a4, t) . These decompositions differ also from the Jacobi poly-
nomial decompositions constructed by Kalnins and Miller, whose functions can
be expressed in terms of functions of the form F (a1 + k, a2 − k; a4 + 2k; t) [12].
The above decompositions of solutions for equation (2) are not suitable. There-
fore in this paper we used decomposition of the form (3).

2. Main part. Investigation of the spectral problem

It is known that recently spectral problems for partial differential equations of
different types have been intensively studied. Research works carried out on
the spectral theory can be divided into two directions. The first is the proof
of theorems on the uniqueness of solutions of boundary value problems for
equations with spectral parameters and the second is the finding of eigenvalues
and eigenfunctions of boundary value problems under consideration. Research
on the second direction is currently being intensively continued and developed.
Many studies have been devoted to finding eigenvalues and eigenfunctions of
boundary value problems for various equations of elliptic and mixed types in
the plane, among which the works [13], [14], and others should be mentioned.
Problems of this type for three-dimensional elliptic and mixed equations are
also well studied, for example, in works [15], [16], [17], [18], [19], [20], [21].

This paper is a continuation of [15], where the spectral Dirichlet problem
for a three-dimensional elliptic equation with singular coefficients was studied.

In this paper we investigate problems on eigenvalues for elliptic equations
with singular coefficients in three-dimensional space. We identify the region of
values of the parameter where there are no eigenvalues of the problem, and we
find a countable number of eigenvalues of the problem and construct eigenfunc-
tions corresponding to the found eigenvalues.

Let Ω be a three-dimensional region bounded by part of the sphere

S0 =
{

(x, y, z) : x2 + y2 + z2 = 1, y > 0, z > 0
}

and two semicircles,

S1 =
{

(x, y, z) : x2 + z2 < 1, y = 0, z > 0
}

,
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S2 =
{

(x, y, z) : x2 + y2 < 1, y > 0, z = 0
}

.

In the domain Ω consider an elliptic equation of the form

uxx + uyy + uzz +
2β

y
uy +

2γ

z
uz + λu = 0, (10)

where u = u (x, y, z) is the unknown function, λ is the parameter, and β, γ ∈ R
and β, γ ∈ (0, 1/2) .

Let us investigate the following problem for eigenvalues:

Problem DN
βγ
λ . Find the values of the parameter and corresponding non-

trivial functions u (x, y, z) ∈ C
(

Ω̄
)

∩C2 (Ω) , satisfying the equation (10) in the
domain Ω and the boundary condition

u (x, y, z) = 0, (x, y, z) ∈ S̄0, (11)

lim
y→0

y2βuy (x, y, z) = 0, (x, y, z) ∈ S1, (12)

lim
z→0

z2βuz (x, y, z) = 0, (x, y, z) ∈ S2. (13)

Theorem 1. If λ ≤ 0, then the problem DN
βγ
λ has only a trivial solution.

Proof. In the domain Ω the identity

y2βz2γu

(

uxx + uyy + uzz +
2β

y
uy +

2γ

z
uz + λu

)

=
(

y2βz2γuux

)

x
+

(

y2βz2γuuy

)

y
+

(

y2βz2γuuz

)

z

−y2βz2γ
(

u2x + u2y + u2z − λu2
)

= 0.

Let us integrate this identity over the domain Ωε
δ1,δ2

⊂ Ω, bounded at z ≥
δ1, y ≥ δ2 by the part of the sphere

S̃0 =
{

(x, y, z) : x2 + y2 + z2 = (1− ε)2 , z ≥ δ1, y ≥ δ2

}

and at z = δ1, y = δ2 circles

S̃1 =
{

(x, y, z) : x2 + z2 < (1− ε)2 , y = δ2, z ≥ δ1

}

,

S̃2 =
{

(x, y, z) : x2 + y2 < (1− ε)2 , y ≥ δ2, z = δ1

}

,
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where ε, δ1 and δ2 are sufficiently small positive numbers. As a result, we have

∫∫∫

Ωε
δ1,δ2

[

(

y2βz2γuux

)

x
+

(

y2βz2γuuy

)

y
+

(

y2βz2γuuz

)

z

]

dxdydz

=

∫∫∫

Ωε
δ1,δ2

[

y2βz2γ
(

u2x + u2y + u2z − λu2
)

]

dxdydz.

Applying the Gauss-Ostrogradsky formula [22] to the integral on the left side
of the last equality, we obtain

∫∫

S̃0

y2βz2γu
∂u

∂n
ds−

∫∫

S̃1

δ2β2 z2γu (x, δ2, z)uz (x, δ2, z) dxdz

−
∫∫

S̃2

y2βδ2γ1 u (x, y, δ1)uz (x, y, δ1) dxdy

=

∫∫∫

Ωε
δ1,δ2

[

y2βz2γ
(

u2x + u2y + u2z − λu2
)

]

dxdydz, (14)

where n is the external normal to the S̃0.
Hence, we go to the limit at ε, δ1, δ2 → 0. Then Ωε

δ1,δ2
→ Ω and considering

the boundary condition (11)-(13), and u, ux, uy, uz ∈ C (Ω) we obtain

∫∫∫

Ω

[

y2βz2γ
(

u2x + u2y + u2z − λu2
)

]

dxdydz = 0.

By virtue of λ ≤ 0 from this equality, it follows that ux ≡ uy ≡ uz ≡
0 in Ω. Hence u (x, y, z) ≡ 0, (x, y, z) ∈ Ω. Sinse u (x, y, z) ∈ C

(

Ω̄
)

and
u(x, y, z)|S̄0∪S̄1∪S̄2

= 0, then u (x, y, z) ≡ 0, (x, y, z) ∈ Ω̄. From this follows
the statement of the theorem.

Now let us investigate the problem DNβγ
λ at λ > 0. In the domain Ω we

introduce spherical coordinates (r, θ, ϕ) , related to the Cartesian coordinates
(x, y, z) according to the formulas x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

where r =
√

x2 + y2 + z2, θ is the angle between vector
−−→
OM and the axis z;

ϕ is the angle between the vector
−−−→
OM ′ and the axis x where O = O (0, 0, 0) ,

M = M (x, y, z) , M ′ = M ′ (x, y, 0) .
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In coordinates (r, θ, ϕ) equation (10) takes the form

urr +
2 (1 + β + γ)

r
ur +

1

r2
{uθθ + [(1 + 2β) ctgθ − 2γtgθ]uθ

+
(

1/ sin2 θ
)

uϕϕ +
(

2βctgϕ/ sin2 θ
)

uϕ
}

+ λu = 0. (15)

For equation (15), let us apply the method of separation of variables. First,
represent the unknown function as u (r, θ, ϕ) = R (r)Q (θ, ϕ) and substitute it
into equation (15). Then, introducing the separation constant χ we obtain two
differential equations

r2R′′ (r) + 2 (1 + β + γ) rR′ (r) +
(

λr2 − χ
)

R (r) = 0, 0 < r < 1;

Qθθ + [(1 + 2β) ctgθ − 2γtgθ]Qθ

+
1

sin2 θ
Qϕϕ +

2βctgϕ

sin2 θ
Qϕ + χQ = 0, 0 < θ < π/2, 0 < ϕ < π. (16)

Now assuming Q (θ, ϕ) = T (θ)S (ϕ) , we obtain from (16)

sin2 θ

T (θ)

[

T ′′ (θ) + [(1 + 2β) ctgθ − 2γtgθ]T ′ (θ)
]

+ χ sin2 θ

= −S′′ (ϕ) + 2βctgϕS′ (ϕ)

S (ϕ)
. (17)

Introducing another separation constant we obtain two ordinary differential
equations from (17):

S′′ (ϕ) + 2βctgϕS′ (ϕ) + µS (ϕ) = 0, 0 < ϕ < π,

sin2 θ
{

T ′′ (θ) + [(1 + 2β) ctgθ − 2γtgθ]T ′ (θ)
}

+(χ sin2 θ − µ)T (θ) = 0, 0 < θ < π/2.

Boundary conditions (11)-(13) lead to boundary conditions for the function :
R (r) : R (1) = 0 and |R (0)| < +∞. For fixed variables r and ϕ from conditions
(11)-(13) and u (x, y, z) ∈ C

(

Ω̄
)

, we obtain the condition for the function

T (θ) : |T (0)| < +∞, lim
θ→π/2

(cos θ)2γ T ′ (θ) = 0. From conditions (11)-(13) for

the function S (ϕ) we obtain the following conditions lim
ϕ→0

(sinϕ)2β S′ (ϕ) = 0

lim
ϕ→π

(sinϕ)2β S′ (ϕ) = 0.
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As a result, the original three-dimensional problem is decomposed into three
one-dimensional eigenvalue problems:

r2R′′ (r) + 2 (1 + β + γ) rR′ (r) +
(

λr2 − χ
)

R (r) = 0, (18)

|R (0)| < +∞, R (1) = 0; (19)

T ′′ (θ) + [(1 + 2β) ctgθ − 2γtgθ]T ′ (θ) +
(

χ− µ

sin2 θ

)

T (θ) = 0, (20)

|T (0)| < +∞, lim
θ→π/2

(cos θ)2γ T ′ (θ) = 0; (21)

S′′ (ϕ) + 2βctgϕS′ (ϕ) (ϕ) + µS (ϕ) = 0, 0 < ϕ < π, (22)

lim
ϕ→0

(sinϕ)2β S′ (ϕ) = 0, lim
ϕ→π

(sinϕ)2β S′ (ϕ) = 0. (23)

Let us first investigate problems {(22),(23)}. Let us find a general solution
to equation (22). To this end, by substituting t = sin2 (ϕ/2) in equation (22),
we obtain a hypergeometric equation

t (1− t) S̃′′ (t) + [(β + 1/2)− (1 + 2β) t] S̃′ (t) + µS̃ (t) = 0,

where S̃ (t) = S
(

2 arcsin
√
t
)

.

Using the general solution of this equation [5], we find the general solution
of equation (22) in the form

S (ϕ) = b7F
(

β − ω/2, β + ω/2;β + 1/2; sin2 (ϕ/2)
)

(24)

+b8
(

sin2 (ϕ/2)
)1/2−β

F ((1− ω)/2, (1 + ω)/2; 3/2 − β; sin2(ϕ/2)),

where b7 and b8 are arbitrary constants, ω = 2
√

µ+ β2, µ > −β2.

Substituting (24) into the first condition (23), we obtain d8 = 0. Hence, the
solution of equation (22) satisfying the first condition (23) is defined as

S (ϕ) = b7F
(

β − ω/2, β + ω/2;β + 1/2; sin2 (ϕ/2)
)

. (25)

Substituting (25) into the second condition (23), we obtain

2b7
β2 − ω2/4

β + 1/2
F

(

1 + ω

2
,
1− ω

2
;
3

2
+ β; 1

)

= 21+2βb7
β2 − ω2/4

β + 1/2

Γ (3/2 + β) Γ (1/2 + β)

Γ (1 + β − ω/2) Γ (1 + β + ω/2)
= 0.
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Multiplying the numerator and denominator of the resulting fraction by
Γ [1− (1 + β − ω/2)] 6= 0 and taking into account the formulas [5] Γ (a) Γ (1− a) =
[π/ sin (aπ)] , from the last equality we obtain

2b7
β2 − ω2/4

β + 1/2

Γ (3/2 + β) Γ (1/2 + β) sin [π (1 + β − ω/2)]

π Γ (1 + β + ω/2) Γ−1 (ω/2− β)
= 0.

We demand that b7 6= 0, ω 6= 2β + 2− 2n, ω 6= −2n− 2β, n ∈ N. Solving
the equation sin [π (1 + β − ω/2)] = 0, we obtain

ωn = 2n+ 2β, n ∈ N. (26)

Hence, the eigenvalues of the problem {(22),(23)} are µn = (ωn/2)
2 − β2

where is defined by formula (26).
The eigenfunctions of the problem {(22),(23)}, corresponding to the eigen-

values µn, has the form

Sn(ϕ) = b7nF (−n, n+ 2β;β +
1

2
; sin2

ϕ

2
) =

b7nn!

(2β)n
Cβ
n (cosϕ) , (27)

where Cλ
n (z) are the Gegenbauer polynomials, [23].

Now we turn to the problem {(18),(19)}. By substituting

R (r) =
(

ρ/
√
λ
)−(1/2+β+γ)

R̃ (ρ) ,

we obtain the Bessel equation from (18) in the following form [5]:

ρ2R̃′′ (ρ) + ρR̃′ (ρ) +
(

ρ2 − v2
)

R̃ (ρ) = 0, (28)

where ρ =
√
λr, v =

√

(1/2 + β + γ)2 + χ.

Taking into account the form of the general solution of equation (28) [5]
and the introduced notations, we obtain a general solution of equation (18) in
the form

R (r) = b3r
−(1/2+β+γ)Jv

(√
λr

)

+ b4r
−(1/2+β+γ)Yv

(√
λr

)

, (29)

where r ∈ (0, 1), b3 and b4 are arbitrary constants.
It follows from (29) that a solution of equation (18) satisfying the first

condition (19) exists at Rev ≥ 1/2 + β + γ and it is defined by equality

R (r) = b3r
−(1/2+β+γ)Jv

(√
λr

)

. (30)
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To find the value of the parameter λ, it is necessary to determine the values
of the parameter v, i.e. the values of the parameter χ, which is found from the
solution of the problem {(20),(21)}. Therefore, let us investigate this problem.

Turning to the new variable ξ = sin2 θ we obtain from equation (20)

ξ (1− ξ) T̃ ′′ (ξ)

+

[

(1 + β)−
(

3

2
+ β + γ

)

ξ

]

T̃ ′ (ξ) +

(

χ

4
− µn

4ξ

)

T̃ (ξ) = 0, (31)

where T̃ (ξ) = T
(

arcsin
√
ξ
)

.

The ordinary differential equation (31) is a degenerate Goyne equation (see
formula (2)).

Based on formulas (9), let us find a general solution of equation (31) and,
taking into account the introduced notations, we obtain a general solution of
equation (20) in the form

T (θ) = b5

∞
∑

k=0

AkF

(

1

4
+

γ + β + v

2
,
1

4
+

γ + β − v

2
;

1 + β + k; sin2 θ
)

+ b6 (sin θ)
−2β

×
∞
∑

k=0

AkF

(

1

4
+

γ − β + v

2
,
1

4
+

γ − β − v

2
; 1 − β + k; sin2 θ

)

,

where b5, b6 are arbitrary constants, and the coefficients Ak are defined as
follows:

A0 = 1, Ak+1 =
k (β + k)− (µn/4)

(k + 1) (1 + β + k)
Ak, k = 0, 1, 2, ... .

The solution of equation (20) satisfying the first condition (21), at b5 = 1,
has the form

T (θ) =
∞
∑

k=0

(β + n/2)k (−n/2)k
k! (1 + β)k

×F

(

1

4
+

β + γ + ν

2
,
1

4
+

β + γ − ν

2
; 1 + β + k; sin2 θ

)

. (32)

By Raabe’s criterium we can prove the convergence of a number series

T (0) =

∞
∑

k=0

(β + n/2)k (−n/2)k
k! (1 + β)k

,
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and based on the expansion of the hypergeometric function, its sum equals

F (β + n/2,−n/2; 1 + β; 1) =















Γ (1 + β)

Γ (1 + β + n/2) Γ (1− n/2)
,

n = 1, 3, 5, ...,
0, n = 2, 4, 6, ... .

Consequently, function (32) satisfies the first condition (21).
Now let us show that function (32) satisfies the second condition (21). To

this end, consistently using the following formulas for the hypergeometric func-
tion [5]

F (a, b; c;x) = (1− x)c−a−b F (c− a, c− b; c;x) ,

F (a, b, c; 1) = [Γ (c) Γ (c− a− b)] / [Γ (c− a) Γ (c− b)] , c− a− b > 0,

have

lim
θ→0

(cos θ)2γ T ′ (θ) = 2

[

(

1

4
+

γ + β

2

)2

− v2

4

]

×

∞
∑

k=0

(β + n/2)k (−n/2)k
k! (1 + β)k

Γ (2 + β + k) Γ (1/2 + γ − k)

Γ
(

5
4 + β

2 + γ
2 + ν

2

)

Γ
(

5
4 +

β
2 + γ

2 − ν
2

) = 0.

By multiplying the numerator and denominator of the resulting fraction by
Γ [1− (5/4 + β/2 + γ/2− v/2)] 6= 0 (since Rev ≥ 1/2 + β + γ) and considering
formulae Γ (a) Γ (1− a) = [π/ sin (aπ)] we obtain from the last equation

lim
θ→0

(cos θ)2γ T ′ (θ) = 2

[

(

1

4
+

γ + β

2

)2

− v2

4

]

×
∞
∑

k=0

(β + n/2)k (−n/2)k
k! (1 + β)k

×Γ (2 + β + k) Γ (1/2 + γ − k) sin [π (5/2 + β + γ − v) /2]

πΓ
(

5
4 + β

2 + γ
2 + ν

2

)

Γ−1
[

1−
(

5
4 + β

2 + γ
2 − ν

2

)] = 0.

This equality is fulfilled, for example, at sin[π(5/2+β+ γ− v)/2] = 0. This
trigonometric equation has only real roots.

Using the formula that gives the solution of this equation, and the inequality
v ≥ 1/2 + β + γ and the relations 5/4 + β/2 + γ/2 + v/2 6= 0,−1,−2, ...,
−1/4− β/2 − γ/2 + v/2 6= 0,−1,−2, ..., let us find

v = vl = 2l + 1/2 + β + γ, l ∈ N. (33)
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By the equality v =
√

(1/2 + β + γ)2 + χ, we get χl = v2l − (1/2 + β + γ)2 ,

l ∈ N, where vl− are the numbers defined by equality (33). Hence, χl are the
eigenvalues of the problem {(20), (21)}.

Assuming in (32) v = vl, l ∈ N, we obtain the eigenfunctions of the
problem {(20),(21)} corresponding to eigenvalues χl :

Tnl (θ) =

∞
∑

k=0

(β + n/2)k (−n/2)k
k! (1 + β)k

(34)

×F
(

l + 1/2 + β + γ,−l; 1 + β + k; sin2 θ
)

, θ ∈ [0, π/2] , n, l ∈ N.

For each value l, k and θ ∈ [0, π/2), the function F (l+1/2+β+γ,−l; 1+β+
k; sin2 θ) is bounded. Hence, series (34) with θ ∈ [0, π/2) converges absolutely
and uniformly, the function Tnl (θ) at θ → (π/2) is bounded. On the basis of
the above, we can conclude that series (34) converges absolutely and uniformly
in [0, π/2] .

By virtue of formula (3), p. 378 of book [24], the function Tnl (θ) can be
written in the form

Tnl(θ) = F3(1/2 + β + γ + l, β + n/2,−l,−n/2, 1 + β; sin2 θ, 1), (35)

where n, l ∈ N ; F3 (a, a
′, b, b′; c;w, z) , (|w| , |z| < 1) is the hypergeometric Ap-

pel function.
Now taking into account that vl, l ∈ N− known numbers defined by equa-

tions (33), we find the values of the parameter λ from (30). To this end,
substituting (30) into the second condition (19), we obtain

Jvl

(√
λ
)

= 0, l ∈ N. (36)

It is known that for p > −1 the Bessel function Jp (z) has a countable
number of zeros, all of which are real and with pairwise opposite signs [5].
Since vl ≥ 1/2 + β + γ, the equation (36) has a countable number of real
roots. Denoting by is σml− m the positive root of equation (36), we obtain the
values of the parameter λ, at which nontrivial solutions of the problem exist
(i.e. eigenvalues of the problem DNβγ

λ ) {(18),(19)} λml = σ2
ml, m, l ∈ N.

Assuming in (30) λ = σ2
ml and b3 = bml, where bml 6= 0− is a spontaneous

constant, m, l ∈ N we obtain nontrivial solutions (eigenfunction) of the problem
{(18),(19)}:

Rml (r) = bmlr
−(1/2+β+γ)Jvl (σml r) , m, l ∈ N. (37)
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Hence, the DNβγ
λ problem has a countable number of eigenvalues and eigen-

functions. Its eigenvalues are numbers λ = σ2
ml, m, l ∈ N, and the eigenfunc-

tions, by virtue of formulae (27), (35), and (37), are defined by the equations

unlm (x, y, z) = bnmlr
−(1/2+β+γ)Jvl (σmlr)

×F

(

−n, n+ 2β;β +
1

2
; sin2

ϕ

2

)

×F3

(

1/2 + β + γ + l, β + n/2,−l,−n/2, 1 + β; sin2 θ, 1
)

,

where bnml 6= 0 are arbitrary constants.

This completes the study of the DNβγ
λ .

The following problem is investigated in a similar way:

Problem DN
αβγ
λ . Find the values of the parameter λ and their correspond-

ing nontrivial functions u (x, y, z) ∈ C
(

Ω̃
)

∩ C2
(

Ω̃
)

, satisfying the equation

uxx + uyy + uzz +
2α

x
ux +

2β

y
uy +

2γ

z
uz + λu = 0, (38)

in the region’s Ω̃ and regional conditions

u(x, y, z) = 0, (x, y, z) ∈ S̄3, lim
x→0

x2αux(x, y, z) = 0, (x, y, z) ∈ S4,

lim
y→0

y2βuy (x, y, z) = 0, (x, y, z) ∈ S5,

lim
z→0

z2γuz (x, y, z) = 0, (x, y, z) ∈ S6,

where Ω̃ = Ω ∩ {x > 0} , S3 = S0 ∩ {x > 0} , S5 = S1 ∩ {x > 0} , S6 =
S2 ∩ {x > 0} , S4 =

{

(x, y, z) : y2 + z2 < 1, x = 0, y > 0, z = 0
}

, α = const ∈
(0, 1/2) .

By performing the same arguments as in the solution of the DNαβγ
λ problem,

we can see that under λ ≤ 0 the problem DNαβγ
λ has only trivial solution,

i.e. in this interval the eigenvalues do not exist, and at λ > 0 eigenvalues
λ̃ml = σ̃2

ml (m, l ∈ N) of the DNαβγ
λ problem are defined as the roots of equations

Jṽl

(√
λ
)

= 0, l ∈ N, where ṽl = 2l + 1/2 + α + β + γ, l ∈ N, and the

corresponding eigenfunctions in the domain Ω̃ are given by the formulas

ũnlm (x, y, z) = b̃nmlr
−(1/2+α+β+γ)Jṽl (σ̃mlr)
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×F
(

n+ α+ β,−n; 1/2 + β; sin2 ϕ
)

×F3

(

1/2 + α+ β + γ + l, β + n/2,−l,−n/2; 1 + α+ β; sin2 θ, 1
)

,

where n,m, l ∈ N, ϕ, θ ∈ [0, π/2] , r ∈ [0, 1] , b̃nml 6= 0 are arbitrary constants.

3. Conclusion

In this paper, Dirichlet-Neumann spectral problems have been formulated for
elliptic type equations with two and three singular coefficients in domains con-
sisting of parts of a sphere. The region of values of the parameter λ where there
are no eigenvalues of the problem, and a countable number of eigenvalues of the
problem are found and eigenfunctions corresponding to the found eigenvalues
are constructed.

The set problems are mapped in spherical coordinates, and then three one-
dimensional problems on eigenvalues are obtained by the method of separation
of variables. Using substitution of variables, the one-dimensional equations are
reduced to Bessel equations, hypergeometric equations and degenerate Goyne
equations. Generated Goyne equations are a special case of the Goyne equation,
which appears by means of a limit transition of one of the parameters of the
equation. This type of equation has not yet been investigated. Therefore,
the introduction gives information about this equation and finds its general
solution.
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