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Abstract: In this paper, we study zeros of an entire function of the following
special form:

∆(λ) =

N
∑

k=1

Pk · λmk · eαk ·λ +

1
∫

−1

eλt · Φ(t)dt,

which is a linear combination of functions previously studied in [18], [19], [20],
[21] associated with regular differential operators of the third and first orders
on an interval.
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1. Introduction

In their work, V.B. Lidsky and V.A. Sadovnichy [1] introduced a class K of
entire functions admitting a representation of the form:

∆(λ) =

N
∑

k=1

eαk ·λ · λmk ·
[

h
∑

ν

βk
ν · λ−ν +O(λ−ν)

]

,

as λ → ∞, where αk are complex constants, mk is some integer number, and
βk
0 6= 0. It is assumed that this asymptotic expansion admits term-by-term

differentiation. The class K arose in solving differential equations containing a
parameter. It turned out that functions of the class K correspond to boundary
problems for ordinary differential equations. If the “boundary” conditions are
non-local, then the corresponding entire functions may not belong to the class
K.

Necessity to study the asymptotics and distributions of zeros of entire func-
tions arises in study of spectrum of a differential operator. However, in solving
spectral problems on a segment with boundary conditions at internal points
(multipoint problems), there often appear functions of the class K, for which
the assumptions about location of exponents on the complex plane are not
satisfied.

The study of the distribution and asymptotics of the zeros of entire functions
that do not belong to the class K is far from complete. In particular, the
classical works by E. Titchmarch [2], M. Cartwright [3] are well known. A wide
class of analogous entire functions was studied in the monographs [4], [5], [6],
[7]. Among the latest works, we note [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17].

2. Problem statement and discussion

In [18], [19], [20], distribution of eigenvalues of a third-order differential operator
u of a composite-type differential operator are studied in the functional space
W 3

2 (0, 1) with periodic boundary value conditions, i.e.

Lu ≡ uxxx + uyyyλu = 0, (1)

u|∂D = 0, ux(0, y) = ux(1, y), uy(x, 0) = uy(x, 1), (2)

where D = {x, y : 0 < x < 1, 0 < y < 1} , which, after applying the Fourier
variable separation method, the problem (1) - (2) decomposes to the following
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spectral problems for third-order ordinary differential operators with periodic
boundary value conditions in the space W 3

2 (0, 1):

L0X ≡ X ′′′ + µX = 0; X(0) = X(1) = 0; X ′(0) = X ′(1), (3)

L1Y ≡ Y ′′′ + νY = 0; Y (0) = Y (1) = 0; Y ′(0) = Y ′(1), (4)

where λ = µ + ν is a spectral parameter, complex number. The problems
(3) and (4) are reduced to study zeros of an entire function coinciding with
exponential-type quasi-polynomials from the class K, which is the characteristic
determinant of the problem (3)-(4):

∆(a) = (
√
3 + 3i) · e(1+i

√
3)a + (

√
3− 3i) · e(1−i

√
3)a + (

√
3 + 3i) · e−(1+i

√
3)a

+(
√
3− 3i) · e−(1−i

√
3)a − 2

√
3e2a − 2

√
3e−2a,

where a =
3
√−µ

2
=

3
√
−ν

2
6= 0 and all zeros, i.e. all eigenvalues and correspond-

ing eigenfunctions of the operator L are found.
In [21], [22], [23], [24], characteristic determinant of spectral problems of

a first-order differential equation on a segment with a spectral parameter in a
boundary value condition with an integral perturbation and a second-order dif-
ferential equation with periodic boundary value conditions, one of the boundary
value conditions with integral perturbation, which is an entire analytic function
of the spectral parameter, is constructed. Due to the formula for the character-
istic determinant, conclusions about the asymptotic behavior of the spectrum
of perturbed spectral problems are proved. In particular, in [21], in the space
W 1

2 (−1, 1) the spectral problem is considered for the operator

L0y ≡ y′(t) = λy(t), −1 < t < 1 (5)

with perturbed boundary value conditions

y(−1)− y(1) = λ

1
∫

−1

y(t)Φ(t)dt. (6)

In the case when Φ(t) is a function of bounded variation, and Φ(−1) = Φ(1) = 1,
the problem (5) - (6) is reduced to the characteristic determinant ∆0(λ) =

e−λ

λ
− eλ

λ
− λ

1
∫

−1

eλtΦ(t)dt, which is an entire analytical function of λ.
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Theorem 1. Let Φ(t) be a function of bounded variation and Φ(−1) =
Φ(1) = 1, then all zeros of the function ∆0(λ), that is all eigenvalues of the
operator L0 belong to the strip Reλ = |x| < k for some k and form a countable
set, having asymptotics λ0

n = iπn+O(1) as n → ∞.

Theorem 2. Let Φ(t) be a continuous function and Φ(−1) = Φ(1) = 1, in
the boundary value condition (6) λ = 1, then the characteristic determinant of

the problem (5) - (6) will be ∆∗
0(λ) = e−λ− eλ−

1
∫

−1

eλtΦ(t)dt - entire analytical

function of λ and zeros belong to the strip Reλ = |x| ≤ k · r · ω(1
r
) for some

k, form a countable set, and for eigenvalues of the operator L0 the asymptotic
formula λ∗

n = iπn + O(nω( 1
n
)) holds as n → ∞, where ω(h) is a module of

continuity of Φ(t).

Remark 3. If Φ(t) is continuous, then the strip expands depending on
properties of the continuity module of Φ(t).

Let {Pk}, {αk} be complex numbers, moreover Pn 6= 0 for all k = 1, N .
In this paper, we consider distribution of zeros of an entire function of the

form

∆(λ) =
N
∑

k=1

Pk · λmk · eαk ·λ +

1
∫

−1

eλt · Φ(t)dt, (7)

which is a linear combination of entire functions previously studied in papers
[1], [18], [19], [20], [21].

3. Distribution of zeros of the entire function ∆(λ) in (7)

Depending on properties of Φ(t), the function ∆(λ) in (7) may not belong to the
class K. The growth of individual members of the function ∆(λ) is determined
primarily by the exponents included in (7). Since module of the exponent is
found by the value of the real part of its exponent, that is

∣

∣

∣
eαkλ

∣

∣

∣
= eRe(αkλ),

then the terms with maximum real parts of the exponentials make the greatest
contribution. Therefore, it is necessary to calculate

max(Re(αkλ), Re(λt)), (8)
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when αk runs through values α1, α2, . . ., αN , the value t changes from -1 to
+1. To find the maximum in (8), it is enough to use the following geometric
technique.

On the complex plane, we plot the numbers α1, α2, . . ., αN , and also the
segment [−1, 1]. Let us find the smallest convex hull of the marked points so
that exactly these points are vertices of the convex polygon. Let us denote
the sides of the resulting polygon as L1, L2, . . ., Ls. If λ changes along a
ray that is not perpendicular to any of these sides of the polygon L1, L2, . . .,
Ls, then growth is determined by one of the exponents eα1λ, eα2λ, . . ., eαNλ,
e−λa, eλb, where a = minSuppΦ, b = maxSuppΦ, and, therefore, as |λ| → ∞
along the specified ray, the function ∆(λ) in (7) grows commensurately with
the corresponding exponent, that is, the following estimate holds

|∆(λ)| > C · eRe(βλ),

where

Re(βλ) = max(Re(α1λ), Re(α2λ), . . . , Re(αNλ), Re(αb),−Re(λa)).

When λ changes along a ray perpendicular to some side Lj , then the main
part of ∆(λ) is determined by the exponential terms from (7), which correspond
to the side Lj. Note that, in this case, the comparison function consists of
exponential terms, the exponents of which fall on the side Lj. From Rouche’s
theorem [25], it follows that, zeros of ∆(λ) in the principal are determined by
zeros of the comparison functions. Therefore, the previous study of the zeros
of entire functions, which has an integral representation [21] and coincides with
exponential-type quasi-polynomials [18], [19], [20], [26], can be considered as
finding the zeros of the comparison function. Consequently, zeros of the function
∆(λ) in (7) asymptotically coincide with zeros of the comparison function. The
number of comparison functions is determined by the number of sides of the
constructed convex polygon.
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