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1. Introduction

In fractional calculus [2], [1], proposing several definitions of fractional order
of derivatives have been interesting target because of their various applications
in science and engineering. While using the Riemann-Liouville and Caputo-
Gerasimov fractional differential operators as convenient tool in analysing the
problems in the theory of differential equations [2], the Hilfer differential oper-
ator is also used as a generalization of these operators. However, we note that
the generalization of the Riemann-Liouville and Caputo-Gerasimov derivatives,
even for the Hilfer fractional derivative was already considered in [3] by Soviet
mathematicians M.M. Dzhrbashyan and A.B. Nersesyan in the following form:

Dσn

0x g(x) = I
1−γn
0x D

γn−1

0x ...D
γ1
0xD

γ0
0xg(x), n ∈ N, x > 0, (1)

where Iα0x andD
α
0x are the Riemann-Liouville fractional integral and the Riemann-

Liouville fractional derivative of order α respectively, σn ∈ (0, n] which is defined
by

σn =

n
∑

j=0

γj − 1 > 0, γj ∈ (0, 1].

Admittedly, the fame of Dzhrbashyan-Nersesyan fractional derivative is arising
into a trend again after releasing the translation of the original work in the
FCAA journal, [4].

Finding effective and convenient methods for solving fractional partial dif-
ferential equations (PDEs) is also an interesting part of the research among its
applications. Certain aspects of the equations and the properties of the frac-
tional order derivatives allow us to choose the methods to solve the problems.
For example, the series method is often used to solve PDEs with any arbitrary
order of derivatives and in this problem, it can be divided into two problems of
solving ordinary differential equations.

Modeling the phenomena in physics or engineering often requires to study
fractional order partial differential equation with variable coefficients. For ex-
ample, in [5] the authors considered fractional PDEs with the space-dependent
coefficient and analyzed the uniqueness and existence of the solution with the
help of the properties of the Legendre polynomials.

In physics, fractional order variant of the of Langevin equation plays an
important role as a more detailed description of Brownian motion (see [6],
Sect. 15.5), when we consider the concept of diffusion process which is as-
sociated with random motion of particle in the space. Despite several other
applications, it can be said that the Langevin equation itself is attractive and
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many various differential equations have been considered during recent years.
Langevin equation and the idea of further development and generalization of
[5] were a key motivation for the studies in the present work.

We would like to note related works [7] - [10] considering nonlocal con-
ditions in time for parabolic and sub-diffusion equations. Precisely, in [10]
for sub-diffusion equations with the Caputo and Riemann-Liouville fractional
derivatives forward problems with the following time-nonlocal conditions

u(ξ) = αu(0) + ϕ, I
1−ρ
0t u(t)|t=ξ = α lim

t→0
I
1−ρ
0t u(t), ξ ∈ (0, T ],

(0 < ρ < 1, α 6= 0, ξ is a fixed number and ϕ is a given function) have been
studied.

In [11] a boundary value problem with nonlocal condition on time was
investigated for a time-fractional and space-singular wave equation. In another
work [12], more general PDEs were under investigation with the same time-
nonlocal conditions.

In the present paper, we are interested in investigating the following space-
degenerate partial fractional differential equation

D
(α1,β1)µ1

0+

(

D
(α2,β2)µ2

0+ u(x, t)− ∂

∂x

[

(1− x2)ux(x, t)
]

)

= f(x, t) (2)

in the domain Ω = {(x, t) : −1 < x < 1, 0 < t ≤ T}. Here D
(αs,βs)µs

0t is a
bi-ordinal Hilfer fractional derivative defined by

D
(αs,βs)µs

0t y(x) := I
µs(s−αs)
0+

(

d

dx

)s

I
(1−µs)(s−βs)
0+ y(x), (3)

where 0 < αs, βs < 1, 0 ≤ µs ≤ 1, s = 1, 2 and I
γ
0+y(x) is the Riemann-

Liouville integral operator of order γ of a function y(x) [2].
The bi-ordinal Hilfer fractional differential operator is considered by V.

M. Bulavatsky with he help of the well-known generalizing Hilfer fractional
derivative of given order and type by expressing it with two orders and type
[13]. Note that (3) is still preserving its interpolation concept between the
Riemann-Liouville and the Caputo-Gerasimov fractional differential operators.

Remark 1. The bi-ordinal Hilfer derivative D
(α,β)µ
0+ g(x) can be written as

D
(α,β)µ
0+ g(x) = I

µ(n−α)
0+

(

d

dt

)n

I
(1−µ)(n−β)
0+ g(x)

= I
µ(n−α)
0+

(

d

dt

)n

I
n−γ
0+ g(x) = I

µ(n−α)
0+ D

γ
0+g(x) = I

γ−δ
0+ D

γ
0+g(x) (4)
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for x ∈ [0, T ], where γ = β + µ(n− β) and δ = β + µ(α− β).

From Remark 1 and (1) it is not difficult to show that the bi-ordinal Hil-
fer fractional differential operator can be represented as particular case of the
Dzhrbashyan-Nersesyan fractional differential operator for n = 1, i.e.

Dσ1

0+g(x) = I
1−γ1
0+ D

γ0
0+g(x).

We also emphasize that in [14]-[15] direct and inverse problems for the
generalized fractional diffusion equation with the bi-ordinal Hilfer derivative
were considered.

2. Statement of the problem and main results

Problem A. Find a solution u(x, t) of the equation (2) satisfying regularity
conditions

t1−γ2u, t1−γ2D
(α2,β2)µ2

0+ u, t1−γ2ux ∈ C(Ω),

t1+δ2−γ1D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u ∈ C(Ω), uxx ∈ C(Ω)

and initial condition

lim
t→0+

I
(1−µ2)(1−β2)
0+ u(x, t) = ψ(x), −1 ≤ x ≤ 1, (5)

and subject to the nonlocal condition

u(x, T ) =
m
∑

i=1

piI
qi
0+D

δ2+γ1
0+ u(x, τi), −1 < x < 1, (6)

where ψ(x), f(x, t) are given functions and qi > 0, δj = βj + µj(αj − βj),
γj = βj + µj(1 − βj), j = 1, 2, pi ∈ R, 0 < τ1 < τ2 < ... < τm ≤ T and also we
assume 0 < γ2 − γ1 < δ2.

We investigate a unique solvability of this problem and present the solution
in the form of Fourier-Legendre series as stated in the following theorem.

Theorem 1. If
m
∑

i=1

piτ
qi−1

i

Γ(qi)
> 0, ψ(x) ∈ C1[−1, 1], ψ′′(x) ∈ L2(−1, 1) ,

f(x, ·) ∈ C1
−1[0, T ] and f(·, t) ∈ C[−1, 1], fxx(·, t) ∈ L2(−1, 1), then Problem

A has a unique solution which can be represented as

u(x, t) =

∞
∑

k=0

uk(t)Pk(x).
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Here λk = k(k + 1), k = 0, 1, 2, ..., ψk and fk(t) are the Fourier-Legendre
coefficients of functions ψ(x) and f(x, t), respectively,

uk(t) = ψkt
γ2−1Eδ2,γ2

(

−λktδ2
)

+ C0t
δ2+γ1−1Eδ2,δ2+γ1(−λktδ2

+

t
∫

0

(t− s)δ2+δ1−1Eδ2,δ2+δ1

[

−λk(t− s)δ2
]

fk(s)ds,

C0 is defined by the formula (16).

We note that the vector space C−1 is defined to be the set of all functions
f(x), x > 0, expressible as f(x) = xpf1(x) for some real number p > −1 and
function f1 ∈ C[0,∞) and the vector space C1

−1 is defined to consist of all
functions f(x), x > 0, such that f is one times differentiable and f ′ ∈ C−1 (see
[16]).

Proof. We intend to investigate this problem by applying the method of
separation variables. From the equation (2) in the homogeneous case and con-
sidering u(x, t), ux(x, t) are bounded at x = ±1 which are come from regularity
conditions, yield the following Legendre equation:

(1− x2)X ′′(x)− 2xX ′(x) + λX(x) = 0 (7)

and it has a bounded solution in [−1, 1] only if λk = k(k + 1), k = 0, 1, 2, ...
and it is given by

X(x) = Pk(x) =
1

2k · k!
dk(x2 − 1)k

dxk
,

where Pk(x) are the Legendre polynomials.
It is known that (W. Kaplan [17], p. 511) that the Legendre polynomials

form a complete orthogonal system in [−1, 1] and any piece-wise continuous
function g can be expressed in the form of Fourier-Legendre series with respect
to the system {Pk(x)}:

g(x) =
∞
∑

k=0

ckPk(x), ck =
(g, Pk)

‖Pk‖2
=

2k + 1

2

1
∫

−1

g(x)Pk(x)dx.

Hence, we represent a sought function u(x, t) and the given function f(x, t) in
the following forms:

u(x, t) =

∞
∑

k=0

uk(t)Pk(x), (8)
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f(x, t) =

∞
∑

k=0

fk(t)Pk(x), (9)

where uk(t) is unknown and fk(t) is the Fourier-Legendre coefficient of f(x, t),
i.e.

fk(t) =
2k + 1

2

1
∫

−1

f(x, t)Pk(x)dx.

By substituting (8) and (9) into the equation (2) and initial conditions (5) one
can obtain the following fractional differential equation

D
(α1,β1)µ1

0+

(

D
(α2,β2)µ2

0+ + λk

)

uk(t) = fk(t), (10)

with initial condition

lim
t→0+

I
(1−µ2)(1−β2)
0+ uk(t) = ψk, (11)

and nonlocal condition

uk(T ) =
m
∑

i=1

piI
qi
0+D

δ2+γ1
0+ uk(τi), (12)

where

ψk =
2k + 1

2

1
∫

−1

ψ(x)Pk(x)dx.

Lemma 1. If g ∈ L1(a, b) and I1−γ
0+ g ∈ ACn(a, b), n − 1 < α, β ≤ n and

0 ≤ µ ≤ 1, then

Iδ0+D
(α,β)µ
0+ g(t) = g(t)−

n
∑

k=1

tγ−k

Γ(γ − k + 1)

[

lim
t→0+

(
d

dt
)n−kI

n−γ
0+ g(t)

]

= g(t)−
n
∑

k=1

Cn−kt
γ−k

Γ(γ − k + 1)
,

where δ = β + µ(α− β), γ = β + µ(n− β).

Proof. The proof of Lemma 1 can be derived from Remark 1 and the com-
position Iαa+D

α
a+ of the Riemann-Liouville fractional integration Iαa+ and differ-

entiation operator Dα
a+.
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Applying the operator Iδ10+ to both sides of (10) and using Lemma 1, we
obtain the following fractional differential equation

D
(α2,β2)µ2

0+ uk(t) + λkuk(t) = h(t), (13)

where

h(t) = Iδ10+fk(t) +
C0t

γ1−1

Γ(γ1)
.

The solution of the problem (13), (11) can be represented as follows ([13]):

uk(t) = ψkt
γ2−1Eδ2,γ2

(

−λktδ2
)

+
t
∫

0

(t− τ)δ2−1Eδ2,δ2

[

−λk(t− τ)δ2
]

h(τ)dτ.
(14)

By substituting h(t) into the solution (14) and after some evaluations, we
can rewrite the solution of (10) satisfying (11) as follows:

uk(t) = ψkt
γ2−1Eδ2,γ2

(

−λktδ2
)

+ C0t
δ2+γ1−1Eδ2,δ2+γ1(−λktδ2

+

t
∫

0

(t− s)δ2+δ1−1Eδ2,δ2+δ1

[

−λk(t− s)δ2
]

fk(s)ds. (15)

In order to find C0 we use the nonlocal condition (12), and obtain

ψkT
γ2−1Eδ2,γ2(−λkT δ2) + C0T

δ2+γ1−1Eδ2,δ2+γ1(−λkT δ2)

+

T
∫

0

(T − s)δ2+δ1−1Eδ2,δ2+δ1

[

−λk(T − s)δ2
]

fk(s)ds

= ψk

m
∑

i=1

piτ
γ2−δ2−γ1+qi−1
i Eδ2,γ2−γ1−δ2+qi(−λkτ δ2i )

−C0λk

m
∑

i=1

piτ
δ2+qi−1
i Eδ2,δ2+qi(−λkτ δ2i )

+fk(0)

m
∑

i=1

piτ
δ1−γ1+qi
i Eδ2,δ1−γ1+qi+1(−λkτ δ2i )

+

m
∑

i=1

pi

τi
∫

0

(τi − s)δ1−γ1+qiEδ2,δ1−γ1+qi+1

[

−λk(τi − s)δ2
]

f ′k(s)ds.
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From the last equality we find C0 as

C0 =
1

∆k
(Bk + Fk), (16)

where

∆k = T δ2+γ1−1Eδ2,δ2+γ1

(

−λkT δ2
)

+ λk

m
∑

i=1

piτ
δ2+qi−1
i Eδ2,δ2+qi

(

−λkτ δ2i
)

,

Bk = ψk

[

m
∑

i=1

piτ
γ2−δ2−γ1+qi−1
i Eδ2,γ2−γ1−δ2+qi

(

−λkτ δ2i
)

− T γ2−1Eδ2,γ2

(

−λkT δ2
)

]

,

Fk = fk(0)
m
∑

i=1

piτ
δ1−γ1+qi
i Eδ2,δ1−γ1+qi+1

(

−λkτ δ2i
)

+

m
∑

i=1

pi

τi
∫

0

(τi − s)δ1−γ1+qiEδ2,δ1−γ1+qi+1

[

−λk(τi − s)δ2
]

f ′k(s)ds

−
T
∫

0

(T − s)δ2+δ1−1Eδ2,δ2+δ1

[

−λk (T − s)δ2
]

fk(s)ds.

We assume that ∆k 6= 0 for any k, then (15) will be the solution of the problem
(10) - (12). For that reason we recall some properties of the Mittag-Leffler
which are reduced from the properties Wright-type function investigated by A.
Pskhu [18].

Lemma 2. If π ≥ |argz| > πα
2 + ε, ε > 0, then the following relations are

valid for |z| → +∞:

lim
|z|→+∞

Eα,β(z) = 0, lim
|z|→+∞

zEα,β(z) = − 1

Γ(β − α)
.

Lemma 3. ([19]) For every α ∈ (0, 1], β > α and x ≥ 0 one has

1

1 + Γ(β−α)
Γ(β) x

≤ Γ(β)Eα,β(−x) ≤
1

1 + Γ(β)
Γ(β+α)x

.
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By considering Lemma 2 it can be shown that

lim
k→+∞

∆k = lim
λk→+∞

∆k = lim
|z1|→+∞

T δ2+γ1−1Eδ2,δ2+γ1(z1)

− lim
|z2|→+∞

m
∑

i=1

piτ
qi−1
i z2Eδ2,δ2+qi(z2) =

m
∑

i=1

piτ
qi−1
i

Γ(qi)
.

Assuming
m
∑

i=1

piτ
qi−1

i

Γ(qi)
6= 0, then it confirms that ∆k 6= 0 for any sufficiently

large k. According to Lemma 3 we can find lower bound of ∆k for any k as

∆k ≥ T δ2+γ1−1

Γ(δ2 + γ1) + Γ(γ1)λkT δ2
+

m
∑

i=1

piλkτ
δ2+qi−1
i

Γ(δ2 + qi) + Γ(qi)λkτ
δ2
i

≥
m
∑

i=1

piλkτ
δ2+qi−1
i

Γ(δ2 + qi) + Γ(qi)λkτ
δ2
i

=

m
∑

i=1

piτ
qi−1
i

Γ(qi)
.

If
m
∑

i=1

piτ
qi−1

i

Γ(qi)
> 0 for any k. Moreover, we may write upper bound of 1

∆k
as

1

∆k
≤M1 =

1
m
∑

i=1

piτ
qi−1

i

Γ(qi)

.

Lemma 4. ([20]) As α < 2, β ∈ R and πα
2 < µ < min{π, πα}, then

|Eα,β(z)| ≤
M

1 + |z| , µ ≤ |argz| ≤ π, |z| ≥ 0,M > 0.

Now we find upper bounds of Bk and Fk by using the well-known estimation
of the Mittag-Leffler function from Lemma 4:

|Bk| ≤ |ψk|
[

m
∑

i=1

|pi|
τ
γ2−δ2−γ1+qi−1
i M

1 + λkτ
δ2
i

+ T γ2−1 M

1 + λkT δ2

]

≤ |ψk|M2

λk
,

where M2 =
m
∑

i=1
|pi|τγ2−2δ2−γ1−1

i + T γ2−δ2−1,

|Fk| ≤ |fk(0)|
m
∑

i=1

|pi|
τ
δ1−γ1+qi
i M

1 + λkτ
δ2
i
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+
m
∑

i=1

|pi|
τi
∫

0

|τi − s|δ1−γ1+qiM

1 + λk|τi − s|δ2 |f ′k(s)|ds

+

T
∫

0

|T − s|δ2+δ1−1 M

1 + λk|T − s|δ2 |fk(s)|ds.

If f ′k(s) ∈ C−1[0, T ], then we may consider for k → ∞ that

|Fk| ≤M3 < +∞, M3 = const > 0.

Considering upper bounds of Bk and Fk, we have that

|C0| ≤
Bk + Fk

∆k
≤ |ψk|M2 +M3

λk
m
∑

i=1

piτ
qi−1

i

Γ(qi)

=
M4

λk
,

where we have assumed that ψ(x) ∈ C[−1, 1] and f(·, t) ∈ C[−1, 1] and f(x, ·) ∈
C1
−1[0, T ].

2.1. Uniqueness of the solution

Let there exist two solutions u1(x, t) and u2(x, t) of the main problem and
consider the function u(x, t) = u1(x, t) − u2(x, t) which is a solution of the
equation (2) in the homogeneous case with homogeneous initial conditions

lim
t→0+

I
(1−µ2)(1−β2)
0+ u(x, t) = 0, −1 ≤ x ≤ 1. (17)

Let us consider the following function

uk(t) =

1
∫

−1

u(x, t)Pk(x)dx, k = 0, 1, 2, ..., . (18)

Based on (18), we consider the function below

vk(t) =

1+ε
∫

ε−1

u(x, t)Pk(x)dx, k = 0, 1, 2, ..., (19)

where ε is very small positive number.
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Applying the operator D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ with respect to t to both sides
of equality (19) and using the homogeneous equation corresponding with (2)
yields that

D
(α1,β1)µ1

0+ D
(α2,β2)µ
0+ vk(t) =

1+ε
∫

ε−1

D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t)Pk(x)dx

=

1+ε
∫

ε−1

Pk(x)D
(α1,β1)µ1

0+

∂

∂x

[

(1− x2)ux(x, t)
]

dx,

then integrating by parts twice the right side of the last equality and calculating
the limit as ε→ 0, gives that

D
(α1,β1)µ1

0+

[

D
(α2,β2)µ2

0+ + λk

]

u(t) = 0.

Obviously, it can be shown that this equation with homogeneous conditions
(17) has only trivial solution uk(t) ≡ 0, t ∈ [0, T ] and hence, from (18) we get

1
∫

−1

u(x, t)Pk(x)dx = 0, k = 0, 1, 2, ... .

Therefore, using the fact of completeness property of system {Pk(x)}, it is
deduced that u(x, t) ≡ 0 in Ω, which proves the uniqueness of the solution of
Problem A.

2.2. Existence of the solution

To show the existence of the solution in the form of (8), we need to proof the
uniform convergence of the series

u(x, t), D
(α1,β1)µ1

0+

∂

∂x

[

(1− x2)ux(x, t)
]

, and D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t).

For k = 1, 2, 3, ... the Legendre polynomials satisfy the following identities
and relations ([17]):

1) P ′
k+1(x)− P ′

k−1(x) = (2k + 1)Pk(x), 2) ‖Pk(x)‖2 = 2
2k+1 ,

3) Pk(1) = 1, Pk(−1) = (−1)k, 4) |Pk(x)| ≤ 1, |x| ≤ 1.
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Let (f, g) be scalar product of the functions f and g in L2(−1, 1). Using
the above properties of the Legendre polynomials, we can write as

ψk =
2k + 1

2

1
∫

−1

ψ(x)Pk(x)dx

=
2k + 1

2

1
∫

−1

ψ(x)
1

2k + 1

[

P ′
k+1(x)− P ′

k−1(x)
]

dx

and integrating by parts,

ψk = −1

2

1
∫

−1

ψ(x) [Pk+1(x)− Pk−1(x)] dx = −1

2

[

(ψ′, Pk+1)− (ψ′, Pk−1)
]

.

Applying the Schwartz inequality |(f, g)| ≤ ‖f‖‖g‖, we can write the esti-
mation of ψk:

|ψk| ≤
1

2

∣

∣(ψ′, Pk+1)
∣

∣+
1

2

∣

∣(ψ′, Pk−1)
∣

∣

≤ 1

2

[

‖ψ′‖ · ‖Pk+1‖+ ‖ψ′‖ · ‖Pk+1‖
]

≤ 1

2
‖ψ′‖

( √
2

(2k + 3)
1

2

+

√
2

(2k − 1)
1

2

)

≤ ‖ψ′‖
√
2

(2k − 1)
1

2

,

where ‖ · ‖ is a norm of L2(−1, 1).
Repeating this process one more time, one can obtain

|ψk| ≤
4
√
2

(2k − 3)
3

2

‖ψ′′(x)‖. (20)

As a similar way, we write the estimation of fk(t):

|fk(t)| ≤
4
√
2

(2k − 3)
3

2

‖f ′′xx(·, t)‖. (21)

Considering the above estimation for the Mittag-Leffler function we write the
bound of u(x, t) by virtue of the properties of the Legendre polynomials:

|u(x, t)| ≤
∞
∑

k=0

[

|ψk|
tγ2−1M

1 + |λk||tδ2|
+ |C0|

tδ2+γ1−1M

1 + |λk||tδ2|
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+

∫ t

0
|t− s|δ2+δ−1 M

1 + |λk||t− s|δ2 |fk(s)ds|
]

.

If ψ(x) ∈ C[−1, 1] and f(·, t) ∈ C−1[−1, 1], we can show that the series of
|u(x, t)| is bounded by convergent series in Ω domain, and therefore by Weier-
strass M-test the series representation of u(x, t) converges uniformly in Ω.

After that, by using the properties of the Legendre polynomials, we show the

uniform convergence of the series ofD
(α1,β1)µ1

0+
∂
∂x

[(1−x2)ux] which is represented
as follows:

D
(α1,β1)µ1

0+

∂

∂x
[(1 − x2)ux] =

∞
∑

k=0

λkD
(α1,β1)µ1

0+ uk(t)Pk(x)

=

∞
∑

k=0

[

ψkt
γ2−δ1−1Eδ2,γ2−δ1(−λktδ2) + C0t

δ2+γ1−δ1−1Eδ2,δ2+γ1−δ1(−λktδ2)

+

t
∫

0

(t− s)δ2−1Eδ2,δ2 [−λk(t− s)δ2 ]fk(s)ds
]

Pk(x).

By means of the properties of the Legendre polynomials and the upper bounds
of the Mittag-Leffler function presented by Lemma 4 and above estimations for
given functions, we get the following estimation

∣

∣

∣

∣

D
(α1,β1)µ1

0+

∂

∂x

[

(1− x2)ux
]

∣

∣

∣

∣

≤
∞
∑

k=0

|D(α1,β1)µ1

0+ uk(t)λkPk(x)|

≤
∞
∑

k=0

λk

[

|ψk|
tγ2−δ1−1M

1 + λk|tδ2 |
+ |C0|

tδ2+γ1−δ1−1M

1 + λk|tδ2 |

]

+

∞
∑

k=0

λk

t
∫

0

|t− z|δ2−1 M

1 + λk||t− z|δ2 |fk(z)|dz

≤
∞
∑

k=0

[

MT γ2−δ1−δ2−14
√
2

(2k − 3)
3

2

‖ψ′′(x)‖+ MM4T
γ1−δ1−1

λk

]

+
∞
∑

k=0

∫ t

0
|t− z|δ2−1 Mλk

1 + λk||t− z|δ2
4
√
2

(2k − 3)
3

2

‖f ′′xx(·, z)‖dz],

where λk = k(k + 1).
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Under necessary conditions for given functions are fulfilled, from the last

inequalities one can show that the series of representation of D
(α1,β1)µ1

0+
∂
∂x

[(1−
x2)ux] is bounded by a convergent series which implies that it is convergent
uniformly according to the Weierstrass M-test in Ω.

Finally, D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t) which can be represented by the equation

D
(α1,β1)µ1

0+ D
(α2,β2)µ2

0+ u(x, t) = D
(α1,β1)µ1

0+

∂

∂x

[

(1− x2)ux(x, t)
]

+ f(x, t)

and its uniform convergence can be shown as a similar way which we have done

before to the D
(α1,β1)µ1

0+

∂

∂x
[(1 − x2)ux].

Thus, we have proved Theorem 1.
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