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1. Introduction

The purpose of this work is to study the nonexistence of radial positive solutions
for the following system





−∆u(x) = λf(v(x)), x ∈ Ω,
−∆v(x) = µg(u(x)), x ∈ Ω,
u(x) = v(x) = 0, x ∈ ∂Ω,

(1)

where λ, µ ≥ ε0 > 0, Ω is an annulus in R
N : Ω = C(0, R, R̂) = {x ∈ R

N : R <

|x| < R̂}. (0 < R < R̂, N ≥ 2), f and g are the smooth functions, nonpositone
and have more than one zero. This study can be done by using energy analysis
and comparison methods.
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The existence result for positive solutions for classes of superlinearities sat-
isfying some conditions, see [6] and [7]. In the single equations case, see [1], [2],
[10] for nonexistence results and [1], [4], [9] for existence results.

Remark 1. Let us note that when Ω is a ball and N ≥ 2, by [3] all
nonnegative solutions are positive componentwise. Hence by [12] solutions are
radially symmetric and decreasing.

In the case when f and g have only one zero, the problem (1) has been
studied by Hai, Shivaji and Oruganti in a ball [3], and by Hakimi in an annulus,
[11].

The nonexistence of radial positive solutions of (1) is equivalent of the
nonexistence of positive solutions of the following





−(rN−1u′)′ = λrN−1f(v), R < r < R̂,

−(rN−1v′)′ = µrN−1g(u), R < r < R̂,

u(R) = u(R̂) = 0 = v(R) = v(R̂).

(2)

Our goal is to assure the result of the nonexistence of radial positive solu-
tions u (u(x) = u(r), r = ‖x‖) of (1) in the case when the nonlinearities f and
g have more than one zero and increasing from the last zero. More precisely,
we assume the following conditions:

(H1) f , g : [0,+∞) −→ R are continuous, f(0) < 0, g(0) < 0, and f (resp.
g) increasing on (β1,+∞) (resp. (β2,+∞)), where β1 (resp. β2) is the greatest
zero of f (resp. of g).

(H2) There exist two positive real numbers ai and bi, i = 1, 2 such that

f(z) ≥ a1z − b1,

g(z) ≥ a2z − b2,

for all z ≥ 0.

2. The main result

The main result in this paper is the following theorem.

Theorem 2. Assume that the hypotheses (H1), (H2) are satisfied. Then
there exists a positive real number σ such that the problem (1) has no radial
positive solution for λµ > σ.
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To prove Theorem 2, we will use, as pointed out in the introduction, the
energy analysis and comparison methods following the work and used similar
ideas of Hai, Shivaji and Oruganti [8]. For this, we need the next three technical
lemmas. We note that the proofs of the first and second lemmas are analogous
to [8, Lemma 3.1 and Lemma 3.2]. On the opposite, the proof of the third
lemma is different from that [8, Lemma 3.3]. This is due to that in our case f

and g may have more than one zero and are not increasing entirely [0,+∞).

Lemma 3. There exists a positive constant C such that for λµ large,

u(R0) + v(R0) ≤ C,

where R0 =
R+R̂
2 .

Proof. Multiplying the first equation in (2) by a positive eigenfunction say
φ corresponding to λ1 and using (H1) we obtain

−

∫ R̂

R

(rN−1u′)′φdr ≥

∫ R̂

R

λ (a1v − b1)φr
N−1dr,

that is, ∫ R̂

R

λ1ur
N−1φdr ≥

∫ R̂

R

λ (a1v − b1)φr
N−1dr. (3)

Similarly, using the second equation in (2) and (H2), we obtain

∫ R̂

R

λ1vr
N−1φdr ≥

∫ R̂

R

µ (a2u− b2)φr
N−1dr. (4)

Combining (3) and (4), we obtain

∫ R̂

R

[
λ1 − λµ

a1a2

λ1

]
vΦrN−1dr ≥

∫ R̂

R

µ

[
−λ

a2b1

λ1
− b2

]
ΦrN−1dr.

Now, if λµ
2 a1a2 ≥ λ2

1, then

∫ R̂

R

µ [−λa2b1 − b2λ1] Φr
N−1dr ≤

∫ R̂

R

−
λµ

2
a1a2vΦr

N−1dr,

that is, ∫ R̂

R

a1a2

2
vΦrN−1dr ≤

∫ R̂

R

[
a2b1 +

b2λ1

ε0

]
ΦrN−1dr (5)
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(because λ ≥ ε0).

Similarly,

∫ R̂

R

a1a2

2
uΦrN−1dr ≤

∫ R̂

R

[
a1b2 +

b1λ1

ε0

]
ΦrN−1dr. (6)

Adding (5) and (6), we obtain the following inequality

∫ R̂

R

(u+ v)ΦrN−1dr ≤
2

a1a2

∫ R̂

R

[
a1b2 +

b1λ1

ε0
+ a2b1 +

b2λ1

ε0

]
ΦrN−1dr.

Then

(u+ v)(R0)

∫ R0

t

ΦrN−1dr ≤

∫ R0

t

(u+ v)ΦrN−1dr

≤

∫ R̂

R

(u+ v)ΦrN−1dr

≤
2

a1a2

∫ R̂

R

[
a1b2 +

b1λ1

ε0
+ a2b1 +

b2λ1

ε0

]
ΦrN−1dr,

where t = max(t1, t2) with t1 and t2 are such that

t1 = max
{
r ∈

(
R, R̂

)
| u′(r) = 0

}

and t2 = max
{
r ∈

(
R, R̂

)
| v′(r) = 0

}
.

The proof is complete.

We remark that ti ≤ R0, for i = 1, 2 was shown in [5]. Now, assume that
there exists z > 0 on I, where I = (α, β), and a constant γ such that

−
(
rN−1z′

)′
≥ γrN−1z , r ∈ I. (7)

Let λ1 = λ1(I) > 0 denote the principal eigenvalue of

{
−
(
rN−1Φ′

)
′

= λrN−1Φ, r ∈ (α, β)
Φ(α) = 0 = Φ(β),

(8)

where 0 < α < β ≤ 1.

We shall prove the following lemma.

Lemma 4. Let (7) hold. Then γ ≤ λ1(I).
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Proof. Multiplying (7) by Ψ (> 0), an eigenfunction corresponding to the
principal eigenvalue λ1(I), and integrating by parts (twice) we obtain

∫ β

α

[γ − λ1(I)] r
N−1zΨdr ≤ βN−1Ψ′(β)z(β) − αN−1Ψ′(α)z(α), (9)

but Ψ′(β) < 0 and Ψ′(α) > 0. Hence the right hand side of (9) is ≤ 0 and thus
γ ≤ λ1(I). The proof is complete.

Now, consider R and R in (R0, R̂) such that R0 < R < R < R̂.

Lemma 5. For λµ sufficiently large, u(R) ≤ β2 or v(R) ≤ β1, respectively.

Proof. We argue by contradiction. Suppose that u(R) > β2 and v(R) > β1.

Case 1: u(R) > ρ2 or v(R) > ρ1, where ρ1 =
β1+θ1

2 and ρ2 =
β2+θ2

2 (θ1 and
θ2 are the greatest zeros of F and G respectively, where F (x) =

∫ x

0 f (t)dt and
G(x) =

∫ x

0 g (t)dt).
If u(R) > ρ2, then

−
(
rN−1v′

)′
= µrN−1g(u)

≥ ε0r
N−1g(ρ2) in J = (R0, R)

and v(r) ≥ β1 on J .
Let ω be the unique solution of

−
(
rN−1ω′

)′
= ε0r

N−1g(ρ2) in J

ω = β1 in ∂J.

Then by comparison arguments, v(r) ≥ ω(r) = ε0g(ρ2)ω0(r) + β1 on J , where
ω0 is the unique (positive) solution of

−
(
rN−1ω′

0

)′
= rN−1 in J

ω0 = 0 on ∂J.

In particular, there exists β1 > β1 (we choose β1 such that f(β1) 6= 0) such
that

v

(
R0 +

2(R −R0)

3

)
≥ ω

(
R0 +

2(R −R0)

3

)

≥ β1 in J∗=

(
R0 +

R−R0

3
, R0 +

2(R−R0)

3

)
.
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Then

−
(
rN−1(u− β2)

′
)′

= λrN−1f(v)

≥ λrN−1f(β1)

≥

(
λf(β1)

C

)
rN−1(u− β2) on J∗

(where C is as in Lemma 3).
Since u− β2 > 0 on J

∗

, it follows that

λf(β1)

C
≤ λ1(J

∗), (10)

where λ1(J
∗) is the principal value of (8) (with (α, β) = J∗).

Next consider

(
rN−1(v − β1)

′
)′

= µrN−1g(u)

≥ µrN−1g(ρ2)

≥

(
µg(ρ2)

C

)
rN−1(v − β1) on J.

Since v − β1 > 0 on J , then

µg(ρ2)

C
≤ λ1(J), (11)

where λ1(J) is the principal value of (8) (with (α, β) = J).
Combining (10) and (11), we obtain

λµf(β1)g(ρ2)

C2
≤ λ1(J

∗)λ1(J),

but f(β1), g(ρ2) and C are fixed positive constants.
This is a contradiction for λµ large.

A similar contradiction can be reached for the case when v(R) > ρ1.
Case 2: u(R) ≤ ρ2 and v(R) ≤ ρ1. Then β2 < u ≤ ρ2 and β1 < v ≤ ρ1 on

J1 = [R,R]. Then by the mean value theorem, there exist c1, c2 ∈ (R,R) such
that ∣∣u′(c2)

∣∣ ≤ ρ2

R−R
,

∣∣v′(c1)
∣∣ ≤ ρ1

R−R
.
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Since −
(
rN−1u′

)
′

≥ 0 on [R,R), then

−rN−1u′(r) ≤ −cN−1
2 u′(c2) on J2 = [R, c2),

thus

∣∣u′(r)
∣∣ ≤

cN−1
2

rN−1

∣∣u′(c2)
∣∣

≤

(
R

R

)N−1
ρ2

R−R
in J2.

Similarly, we obtain

∣∣v′(r)
∣∣ ≤

(
R

R

)N−1
ρ1

R−R
in J3 = [R, c1).

Hence there exists r0 ∈ (R,R) such that
∣∣u′(r0)

∣∣ ≤ c̃ and
∣∣v′(r0)

∣∣ ≤ c̃,

where c̃ = 1
R−R

(
R
R

)N−1
max(ρ2, ρ1). Now, we define the energy function

E(r) = u′(r)v′(r) + λF (v(r)) + µG(u(r)).

Then

E′(r) = −
2(N − 1)

r
u′(r)v′(r) ≤ 0,

and hence E ≥ 0 on [R, R̂], (because u′(R̂)v′(R̂) ≥ 0). However,

E(r0) ≤ c̃2 + λF (ρ1) + µG(ρ2), (12)

and F (ρ1) < 0 and G(ρ2) < 0. Hence E(r0) < 0 for λµ large which is a
contradiction. The proof is complete.

Proof of Theorem 2. Assume λµ is large enough so that both Lemmas 3 and 5
hold true. We take the case when u(R) ≤ β2. Then

−
(
rN−1v′

)′
= µrN−1g(u) ≤ 0 on J3 = (R, R̂)

v(R) ≤ C, v(R̂) = 0,

hence, by comparison argument v(r) ≤ ω̃(r), where ω̃ is the solution of

−
(
rN−1ω̃′

)′
= 0 on J3
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ω̃(R) = C, ω̃(R̂) = 0.

However, ω̃(r) = C
∫
R̂

R
s1−Nds

∫ R̂

r
s1−Nds decreases from C to 0 on [R, R̂], hence

there exists r1 ∈ (R, R̂) (independent of λµ) such that ω̃(r1) = β1

2 . (Here we

assume that β1

2 < C, unless we can choose N0 such that β1

N0
< C).

Hence v(r1) ≤
β1

2 , and

−
(
rN−1(β2 − u)′

)′
= −λrN−1f(v)

≥ −λrN−1f(
β1

2
)

≥ λ

(
−f(

β1

2
)

)
rN−1β2 − u

β2
on J4 = (r1, R̂).

Since β2 − u > 0 on J4, then

λK̃1

β2
≤ λ1(J4), (13)

where K̃1 = −f(β1

2 ) et λ1(J4) is the principal eigenvalue of (4) (with (α, β) =
J4).

Similarly, there exists r2 ∈ (r1, R̂) (independent of λµ) such that

v(r2) <
β1

2
.

Hence

−
(
rN−1u′

)′
= µrN−1f(v) ≤ 0 on J5 = (r2, R̂)

u(r2) ≤ C, u(R̂) = 0,

then, by comparison argument we obtain

u(r) ≤ ω1(r) =
C

∫ R̂

r2
s1−Nds

∫ R̂

r

s1−Nds,

thus

−
(
rN−1ω′

1

)′
= 0, in J5,

ω1(r2) = C, ω1(R̂) = 0.
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Arguing as before, there exists r3 ∈ (r2, R̂) (independent of λµ) such that

u(r3) ≤ ω1(r3) ≤
β2

2
< C.

Hence

−
(
rN−1(β1 − v)′

)′
= −µrN−1g(v)

≥ −µrN−1g(
β2

2
)

≥ µ

(
−g(

β2

2
)

)
rN−1β1 − v

β1
on J6 = (r3, R̂).

Since β1 − v > 0 on J6, it follows that

µK̃2

β1
≤ λ1(J6), (14)

where K̃2 = −g(β1

2 ) and λ1(J6) is the principal eigenvalue of (7) (with (α, β) =
J6).

Combining (13) and (14), we obtain

λµK̃1K̃2

β1β2
≤ λ1(J4)λ1(J6),

which is a contradiction with λµ large.

A similar contradiction can be reached for the case v(R2) ≤ β1.

Hence Theorem 2 is proven.
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