MODIFIED TWO STEPS IMPLICIT MIDPOINT ITERATION
METHOD TO APPROXIMATE FIXED POINTS FOR NONEXPANSIVE MAPPINGS

Abstract

In this paper, we establish the weak convergence of fixed points for nonexpansive mappings in the setting of uniformly convex Banach spaces using modified two steps implicit midpoint rule.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 6
Year: 2021

DOI: 10.12732/ijam.v34i6.7

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A.R. Khan, H. Fukhar-ud-din, Weak convergence of Ishikawa Iterates for nonexpansive maps, Proc. Wo. Co. Engg. Com. Sci., 2 (2010), 20-22.
  2. [2] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.
  3. [3] H.K. Xu, M.A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theo. Appl., 2015, No 41 (2015).
  4. [4] H.Y. Zhou, G.T. Guo, H.J. Hwang, Y.J. Cho, On the iterative methods for nonlinear operator equations in Banach spaces, PanAmer. Math. J., 14, No 4 (2004), 61-68.
  5. [5] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308.
  6. [6] M.O. Aibinu, J.K. Kim, On the rate of convergence of viscosity implicit iterative algorithms, Nonlinear Funct. Anal. Appl., 25, No 1 (2020), 135152.
  7. [7] M.A. Alghamdi, M. Ali Alghamdi, N. Shahzad, H.K. Xu, The implicit midpoint rule for nonexpansive mappings, Fixed Point Theo. Appl., 96 (2014), 1-9.
  8. [8] Y. Song, Q. Li, Successive approximations for quasi firmly type nonexpansive mappings, Math. Commun., 16 (2011), 251-264.
  9. [9] Y. Yao, N. Shahzad, Y.C. Liou, Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theo. Appl., 2015, No 166 (2015).