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Abstract: In social networks it is usual to find nodes that tend to establish
relationships based on common attributes like gender and age. To represent
this behavior, past models consider a partition of the set of nodes in types and
introduce an affinity level, representing the tendency of a node to connect with
other nodes of the same type. The partition of the set of nodes in types give
rise to a class of networks called heterogeneous. In this work we characterize
mathematical expressions for the dynamics and convergence of the probabil-
ity and complementary cumulative degree distribution functions in a model of
heterogeneous networks. We show that the degree distribution of each type of
nodes follows a power law characterizing its scaling exponent. Furthermore,
using the stability in the sense of Lyapunov of the expected average degree for
each type, we propose an approach to detect instants at which the formation
of new edges does not follow the mechanisms of the proposed network.
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1. Introduction

Understanding the dynamics of topological measures in social networks has
increased the importance of determining the way how nodes establish relation-
ships between them [2, 3, 11]. Centrality measures often help us to understand
these dynamics, being the degree a measure that allows us to explain real world
phenomena represented by social networks (e.g., the spreading of information
[13, 10, 18]). In particular, the model given in [2] introduces mechanisms in
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which new edges are established in proportion to the degree centrality of existing
nodes. Although the model helps to understand some real world phenomena,
it is known its limitations to describe some social networks [4, 1, 17].

Based on attractive parameters and non-linear functions, some works ex-
plain the dynamics of empirical networks in which the edge formation is affected
by node attributes [7, 5, 8, 14]. In particular, considering a partition of the set
of nodes in two groups, the work in [8] introduces a model to recreate hetero-
geneous networks in which the probability of establishing new edges is based
on a combination of the degree centrality and an affinity level between existing
nodes. The affinity allows to new nodes to prefer to connect nodes with common
characteristics at a higher rate than between dissimilar ones [12]. The prefer-
ence for establishing new edges is called homophily. Based on [8], the work in
[14] characterizes the dynamics and convergence of three homophily measures
at node, group, and network level. Moreover, the work also characterizes the
convergence of network modularity and show that the formation of community
structures can be expressed as a function of network homophily.

Using a discrete analysis of the heterogeneous network model given in [8,
14], in this work we derive expressions for the dynamics and the limit values
of the probability degree distribution function (pdf) and the complementary
cumulative degree distribution function (ccdf) for nodes of each group. In
particular, using Stirling’s formula, we show that the asymptotic value of the
ccdf follows a power law and establish the scaling exponent of the distribution
for large degrees. Using similar arguments as in [16, 15], we also characterize
the expected average degree for any proportion of groups as an invariant set
and show, for equal proportion of groups, that the set is stable in the sense of
Lyapunov, which is the key for detecting anomalies in the formation of edges
between nodes in the network. The anomalous event detection we present in
this work is an extension of the approach given in [15].

The reminder of this paper is organized as follows. Section 2 describes the
model and shows that the expected sum of the degrees of the nodes of any group
follows a linear function. Using a discrete analysis, Section 3 characterizes the
dynamics and the limit value of the pdf and the ccdf of nodes of each group
and for the entire network. Furthermore, it also establishes the stability of the
expected average degree for any proportion of groups of nodes and uses the
stability for detecting instants at which anomalies in the edge formation occur
in the model. Section 4 presents simulations that illustrate the theoretical
results given in Section 3. Finally, Section 5 draws some conclusions and future
research directions.
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2. The model

In this section we characterize some properties of the network model given in [8].
At any discrete time t ≥ 0, consider a simple undirected network G(t) with set
of nodes V (t), partitioned in two groups, and set of edges E(t). Let n(t) denote
the cardinality of V (t). We will refer to a node of type i as a node belonging to
the group i, for i = 1, 2. Let Vi(t) represent the set of nodes of type i at t. We
denote by ku(t) the degree of a node u ∈ V (t), and by πi

j the affinity between
nodes of types j and i defined by

πi
j =

{

q if i = j,

1− q otherwise,

with 0 ≤ q ≤ 1. We write pi for the proportion of nodes of type i. Note that at
any time t ≥ 0, the expected number of nodes of type i is pin(t). The following
mechanisms define the evolution of G(t):

(M1) New nodes: A new node w of type i attaches to the network with m
undirected edges.

(M2) New edges: The probability of selecting a node u ∈ V (t− 1) of type j to
establish a new edge with the node w is given by

Πij
u =

πi
jku(t− 1)

∑

v∈V (t−1) π
i
τ(v)kv(t− 1)

, (1)

where τ(v) denotes the type of v. Note that mechanism M1 implies that the
network grows by the addition of new nodes and new edges. Note also that
mechanism M2 implies that a new node tends to establish new edges with
nodes of its same type and a high degree.

From eq. (1), let si(t) =
∑

v∈Vi(t)
kv(t) denote the expected sum of the

degrees of the nodes of type i at time t. Moreover, let -i denote the type
different than type i (i.e., -i = 1 if and only if i = 2). Based on [14], we know

si(t) = si(t− 1) +mpi +
mpiqsi(t− 1)

qsi(t− 1) + (1− q)s-i(t− 1)

+
m(1− pi)(1 − q)si(t− 1)

qs-i(t− 1) + (1− q)si(t− 1)

= si(t− 1) +mpi +
mpiq

2q − 1 + (1− q)d(0)+2m(t−1)
si(t−1)



1190 D. Ruiz

+
m(1− pi)(1 − q)

1− 2q + q d(0)+2m(t−1)
si(t−1)

, (2)

where d(0) denotes the sum of the degrees of the nodes in V (0). For q = 1,
we know by eq. (2) that si(t) = pid(0) + 2mpit. We next show that for q 6= 1,
the expression si(t) behaves like a linear function for a large t. Indeed, if
limt→∞

t
si(t)

= 0, then in eq. (2) we would have

si(t) = si(t− 1) +mpi +
mpiq

2q − 1
+

m(1− pi)(1− q)

1− 2q
,

implying that si(t) is a linear function in terms of t, which is not possible. On
the other hand, if limt→∞

t
si(t)

= ∞, then in eq. (2) we would have si(t) =

si(t − 1) + mpi, i.e., si(t) would be a linear function in terms of t, and again
this is not possible. Thus

si(t) ∼ βit (3)

for a non-zero real number βi. According to the work in [9], we know that βi is
a root of the third degree equation

r(x) = x−
mpiq

(2q − 1)x+ 2m(1 − q)
x−

m(1− pi)(1 − q)

(1− 2q)x+ 2mq
x−mpi.

Note that βi represents the expected value of the slope of si(t), that is, si(t)
can be written as si(t) = pid0 + βit and so

σi(t) :=
∑

v∈V (t)

πi
τ(v)kv(t) = qsi(t) + (1− q)s-i(t)

= (2q − 1)si(t) + (1− q)(d(0) + 2mt).

3. Degree properties

3.1. Dynamics of the pdf and the ccdf

Using a discrete analysis, this section characterizes the dynamics and limit value
of the probability degree distribution function (pdf) and of the complementary
cumulative degree distribution function (ccdf) for each of both groups of nodes.
It also provides the limit value of the ccdf for the entire network. Consider the
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following notation. Let Pj,k(t) denote the probability that the degree of a node
of type j selected uniformly at random at time t is k, and put

δj,k =
mkpjq

qβj + (1− q)β-j
+

mkp-j(1− q)

qβ-j + (1− q)βj
(4)

for all k ≥ m.

Theorem 1 (Pdf for nodes of type j). The limit value of the probability

degree distribution for nodes of type j is given by

lim
t→∞

Pj,k(t) =
m2Γ(k)Γ

(

m
δj,m

+m
)

δj,mΓ
(

k + 1 + m
δj,m

)

Γ(m+ 1)
,

where Γ(·) denotes the Gamma function.

Proof. Let nj(t) denote the number of nodes of type j at time t. For a
large t we know that Pj,k(t) = Pj,k(t−1) for all k ≥ m. In particular, note that

Pj,k(t) =
|Vj,k(t)|

nj(t)
,

where |Vj,k(t)| denotes the number of nodes of type j and degree k at time t.
Since the number of new edges established by the new node is m, the number
of nodes of type j and degree k at time t is given by |Vj,k(t− 1)| + a for some
a ∈ ±{0, 1, . . . ,m}, and so

Pj,k(t) =
|Vj,k(t− 1)|+ a

nj(t)
=

|Vj,k(t− 1)|

nj(t− 1)
nj(t)

nj(t−1)

+
a

nj(t)
.

Moreover, since limt→∞
nj(t)

nj(t−1) = 1 and limt→∞
a

nj(t)
= 0, we have Pj,k(t) =

Pj,k(t− 1) for a large t.
Now, note that the probability that the new node connects to a node of

type j and degree k at time t is given by

Pj,k(t) =
mkpjq

σj(t− 1)
+

mkp-j(1− q)

σ-j(t− 1)
. (5)

The first and second terms in eq. (5) represent the probability that the new
node of type j and type -j, respectively, connects to a node with degree k and
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type j. We use eq. (5) to characterize the expected number of nodes of type j
and degree k ≥ m.

Observe that the expected number of nodes of type j with degree k = m at
time t is

nj(t)Pj,m(t) = nj(t− 1)Pj,m(t− 1)− nj(t− 1)Pj,m(t− 1)Pj,m(t) + pj. (6)

Because nj(t) = pjn(t) for a large enough t, we have

Pj,m(t) =
1

1 + n(t− 1)Pj,m(t)
.

Since limt→∞ n(t − 1)Pj,m(t) exists, it follows that limt→∞ Pj,m(t) also exists
and according to eq. (4) we get

lim
t→∞

Pj,m(t) =
1

1 + δj,m
.

Now, the expected number of nodes with degree k > m and type j is given
by

pjn(t)Pj,k(t) = pjn(t− 1)Pj,k(t− 1)− pjn(t− 1)Pj,k(t− 1)Pj,k(t)

+ pjn(t− 1)Pj,k−1(t− 1)Pj,k−1(t). (7)

Using mathematical induction and the fact that limt→∞ Pj,m(t) exists, we can
show that limt→∞ Pj,k(t) exists for all k and then

lim
t→∞

Pj,k(t) =
limt→∞ n(t− 1)Pj,k−1(t)

1 + limt→∞ n(t− 1)Pj,k(t)
lim
t→∞

Pj,k−1(t)

=
δj,k−1

1 + δj,k
lim
t→∞

Pj,k−1(t).

From the above we get

lim
t→∞

Pj,k(t) =















δj,k−1

1 + δj,k
lim
t→∞

Pj,k−1(t) if k > m,

1

1 + δj,m
if k = m.

(8)

Solving the recurrence given in eq. (8), we have

lim
t→∞

Pj,k(t) =
m2Γ(k)Γ

(

m
δj,m

+m
)

δj,mΓ
(

k + 1 + m
δj,m

)

Γ(m+ 1)
.
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According to eqs. (6) and (7), it is possible to express the dynamics of the
probability degree distribution for nodes of type j as an infinite dimensional
time-varying affine linear model as in [6]. In particular, eq. (6) characterizes
the dynamics of Pj,m(t). Furthermore, from eq. (7), for k > m we know that

(Pj,m+1(t), Pj,m+2(t), . . .)
⊤ = A(t)(Pj,m(t), Pj,m+1(t), . . .)

⊤

represents the dynamics of the degree distribution, and for i, ℓ ≥ 1, the element
in the i-th row and ℓ-th column of the matrix A(t) is given by

A(t)iℓ =
n(t− 1)

n(t)











Pj,m+i−1(t) ℓ = i,

1− Pj,m+i(t) ℓ = i+ 1,

0 otherwise.

Consequently, for all t we have






Pj,m+1(t)
Pj,m+2(t)

...






=

n(t− 1)

n(t)







Pj,m(t) 1− Pj,m+1(t) 0 0 0 · · ·
0 Pj,m+1(t) 1− Pj,m+2(t) 0 0 · · ·
...

...
...

...
...

...







·















Pj,m(t− 1)
Pj,m+1(t− 1)
Pj,m+2(t− 1)
Pj,m+3(t− 1)

...















.

Theorem 2 (Ccdf for nodes of type j). The limit value of the comple-

mentary cumulative degree distribution for nodes of type j is given by

lim
t→∞

Fj,k(t) =
Γ(k)Γ

(

m
δj,m

+m+ 1
)

Γ
(

k + 1 + m
δj,m

)

Γ(m)
,

where Fj,k(t) denotes the probability that a randomly selected node of type j
has a probability greater than or equal to k at time t.

Proof. Because ku(t) ≥ m for all t ≥ 0 and all u ∈ V (t), we note that
Fj,k(t) = 1 for all k ≤ m. Note also that the expected number of nodes of
type j with degree k > m is given by

pjn(t)Fj,k(t) = pjn(t− 1)Fj,k(t− 1) + pjn(t− 1)Pj,k−1(t)Pj,k−1(t− 1).
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Since Pj,k−1(t− 1) = Fj,k−1(t− 1)− Fj,k(t− 1), we obtain

pjn(t)Fj,k(t) = pjn(t− 1)Fj,k(t− 1)

+ pjn(t− 1)Pj,k−1(t)(Fj,k−1(t− 1)− Fj,k(t− 1)). (9)

For a large t we know that Fj,k(t) = Fj,k(t − 1). Since Fj,m(t) = 1, using
mathematical induction we can show that limt→∞ Fj,k(t) exists for all k and

lim
t→∞

Fj,k(t) =
limt→∞ n(t− 1)Pj,k−1(t)

1 + limt→∞ n(t− 1)Pj,k(t)
lim
t→∞

Fj,k−1(t)

=
δj,k−1

1 + δj,k
lim
t→∞

Fj,k−1(t).

In summary

lim
t→∞

Fj,k(t) =







δj,k−1

1 + δj,k
lim
t→∞

Fj,k−1(t) if k > m,

1 if k = m.
(10)

From eq. (10), it follows that

lim
t→∞

Fj,k(t) =
Γ(k)Γ

(

m
δj,m

+m+ 1
)

Γ
(

k + 1 + m
δj,m

)

Γ(m)
.

Using Stirling’s formula, for a large enough k we know that the complemen-
tary cumulative degree distribution of nodes of type j follows a power law, that
is

Fj,k(∞) ∼ k
−

(

1+ m
δj,m

)

.

Now, based on eq. (9), it is possible to express the dynamics of the com-
plementary cumulative degree distribution for nodes of type j as an infinite
dimensional time-varying affine linear model as follows

(Fj,2(t), Fj,3(t), . . .)
⊤ = B(t)(Fj,1(t), Fj,2(t), . . .)

⊤,

where for i, ℓ ≥ 0, the element in the i-th row and ℓ-th column of the matrix
B(t) is given by

B(t)iℓ =
n(t− 1)

n(t)











Pj,i(t) ℓ = i,

1− Pj,i(t) ℓ = i+ 1,

0 otherwise.
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Hence, for all t we have






Fj,2(t)
Fj,3(t)

...






=

n(t− 1)

n(t)







Pj,1(t) 1− Pj,1(t) 0 0 0 · · ·
0 Pj,2(t) 1− Pj,2(t) 0 0 · · ·
...

...
...

...
...

...







·











Fj,1(t− 1)
Fj,2(t− 1)
Fj,3(t− 1)

...











.

Corollary 3 (Ccdf for the entire network). If k ≥ m, then the limit value

of the expected complementary cumulative degree distribution is

lim
t→∞

Fk(t) =

2
∑

j=1

pj lim
t→∞

Fj,k(t).

Proof. A finite mixture of the complementary cumulative degree distribu-
tions given in Theorem 2 provides the value for limt→∞ Fk(t).

3.2. Stability of the expected average degree and anomalous event

detection

This section characterizes the expected average degree as an invariant stable
set for each type of nodes and establishes conditions to detect instants at which
the deletion of edges in the proposed model take place. Note that the average
degree of nodes of type j at any time t is given by

K̄j(t) =

∑

v∈Vj (t)
kv(t)

nj(t)
.

Based on eq. (3), we know that the expected value of K̄j(t) for a large t satisfies

E[K̄j(t)] = E

[
∑

v∈Vj(t)
kv(t)

nj(t)

]

=
pjd0 + βjt

nj(t)
. (11)

Because n(t) = n(0) + t, from eq. (11) we have

lim
t→∞

E[K̄j(t)] =
βj
pj

.
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Now, note that the expected value of K̄j(t+ 1) for a large t satisfies

E[K̄j(t+ 1)] =
nj(t)E[K̄j(t)] + βj

nj(t+ 1)
.

In particular, if E[K̄j(t)] =
βj

pj
, then we obtain that

E[K̄j(t+ 1)] =
pjn(t)

βj

pj
+ βj

pjn(t+ 1)

=
βj
pj

,

where we have used that nj(t) = pjn(t). From the above, it follows that the
limit value of the expected average degree for nodes of type j is invariant. Now,
for pj = 0.5, note that the expected value of K̄j(t) for all t is given by

E[K̄j(t)] =
pjd0 +mt

pjn(t)

=
d0 + 2mt

n(t)
.

Using a similar argument as in [16, 15], it can be proved that for pj = 0.5,
the limit value of E[K̄j(t)], denoted by xe = E[K̄j(∞)], is stable in the sense of
Lyapunov.

Theorem 4. If pj = 0.5, then the invariant set {xe} is asymptotically

stable in the sense of Lyapunov.

Proof. Let x(t) = E[K̄j(t)] represent the state of the model at time t. Let
V : R

+
0 → R

+
0 , defined by V(x(t)) = |x(t) − xe|, be a Lyapunov candidate

function. To verify the theorem it is sufficient to show that V is non-increasing
over time and that V(x(t)) → 0 as t → ∞. Using eq. (11) we deduce that

V(x(t+ 1))− V(x(t)) = |x(t+ 1)− xe| − |x(t)− xe|

=

∣

∣

∣

∣

d0 + 2m(t+ 1)

n(0) + t+ 1
− 2m

∣

∣

∣

∣

−

∣

∣

∣

∣

d0 + 2mt

n(0) + t
− 2m

∣

∣

∣

∣

=

∣

∣

∣

∣

d0 − 2mn(0)

n(0) + t+ 1

∣

∣

∣

∣

−

∣

∣

∣

∣

d0 − 2mn(0)

n(0) + t

∣

∣

∣

∣

< 0,

which implies that V is a non-increasing function. By the definition of x(t),
we know that x(t) → xe as t → ∞, that is, limt→∞ V(x(t)) = 0. Thus, the
invariant set {xe} is asymptotically stable in the sense of Lyapunov.
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Now, using the stability properties of the expected average degree, we ex-
tend the approach given in [15] to detect instants at which the formation of
edges does not follow the mechanisms of the proposed model. Let Mj(t) denote
the number of new edges established to nodes of type j at time t and write
wj(t) = Mj(t) − E[Mj(t)]. Note that wj(t) represents the difference between
the number of new edges established to nodes of type j and its expected value
at time t. Because the number of new edges is m, we know that there exist
non-negative constants k1 and k2 such that k1 ≤ Mj(t) ≤ k2, giving that

k1 − E[Mj(t)] ≤ ωj(t) ≤ k2 − E[Mj(t)].

Let γj = max{k2 − E[Mj(t)],E[Mj(t)]− k1}, and define

αj(t) = E[K̄j(∞)]− E[K̄j(t)] +
2γj
n(t)

,

βj(t) = E[K̄j(∞)]− E[K̄j(t)]−
2γj
n(t)

.

At each instant of time t, consider the closed set

Dj(t) =

{

[βj(t), αj(t)] if K̄(0) ≤ E[K̄j(∞)],

−[αj(t), βj(t)] otherwise.

Now, let

f(wj(t)) =

∣

∣

∣

∣

E[K̄j(∞)]− E[K̄j(t)]−
2wj(t)

n(t)

∣

∣

∣

∣

. (12)

By using Theorem 6 in [15], we can show that if |wj(t)| ≤ γj, then f(wj(t)) ∈
Dj(t). In particular, if we assume that K̄(0) ≤ E[K̄j(∞)], then we obtain that
Dj(t) = [βj(t), αj(t)]. Since

E[K̄j(t)] =
d0 + 2mt

n(t)
=

K̄(0)n(0) + 2mt

n(t)

we have that f(wj(t)) ∈ Dj(t) if and only if βj(t) ≤ f(wj(t)) ≤ αj(t), that is,
if and only if

E[K̄j(∞)]− E[K̄j(t)]−
2γj
n(t) ≤

∣

∣

∣E[K̄j(∞)]− E[K̄j(t)]−
2wj(t)
n(t)

∣

∣

∣

≤ E[K̄j(∞)]− E[K̄j(t)] +
2γj
n(t) .

Note that the left-hand side of the above inequality is true if and only if wj(t) ≤

γj or E[K̄j(∞)] − E[K̄j(t)] −
wj(t)
n(t) ≤

γj
n(t) , which clearly holds. Now, the right-

hand side is true if and only if wj(t) ≥ −γj and n(0)(2m−K̄(0))+(γj−wj(t)) ≥
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Figure 1: Dynamics of the pdf for nodes of (a) type 1; and (b) type
2, with affinity level q = 0.8, and p1 = 0.8. Dashed curves represent
the theoretical predictions obtained from Theorem 1.

0, which also holds. So our approach establishes that an anomaly is detected
at time t, if for some j ∈ {1, 2}, the image of wj(t) under the function f does
not belong to the set Dj(t), that is, if f(wj(t)) /∈ Dj(t).

4. Simulations

4.1. Degree properties

In this section we illustrate the dynamics of the pdf and ccdf given in Section 3.1.
Let m = 2. Consider an initial network with n(0) = 5 and two types of nodes
for which p1 = 0.8. For degrees k ∈ {2, 3, 4, 5, 6}, Figures 1 and 2 illustrate
the dynamics of the pdf and the ccdf for q = 0.8. Note that the predictions of
the dynamics given in Theorems 1 and 2 are a better fit for a large values of t
than for small values. Figure 3, which illustrates the dynamics of the ccdf for
the entire network with affinities q ∈ {0.1, 0.3, 0.5} and proportions p1 = 0.8
(a) and p1 = 0.7 (b), shows that the shape of the degree distribution not only
depends on q, but also on the proportions of groups. According to Theorem 3,
the complementary cumulative degree distribution of the entire network is a
weighted sum of two power laws. For large enough k, note that the tail of the
distribution follows a power law with the scaling exponent equals to the smaller
of the both power laws, as we illustrate it in Figure 4 for proportions p1 = 0.8
with affinity q = 0.1 (a), and for p1 = 0.7 with affinity q = 0.7 (b).
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Figure 2: Dynamics of the ccdf for nodes of (a) type 1; and (b) type
2, with affinity level q = 0.8, and p1 = 0.8. Dashed curves represent
the theoretical predictions from Theorem 2.
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Figure 3: Complementary cumulative degree distribution of the net-
work for affinities q ∈ {0.1, 0.3, 0.5} and proportions (a) p1 = 0.8;
and (b) p1 = 0.7. Solid curves represent the theoretical expressions
given in Corollary 3 and the dotted curves the simulated distribu-
tions.

4.2. Anomalous event detection

Here we apply the approach given in Section 3.2 to detect instants at which
anomalous events take place in the proposed model. Consider a network evo-
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Figure 4: Theoretical complementary cumulative degree distribu-
tions (a) for p1 = 0.8 with q = 0.1; and (b) for p1 = 0.7 with q = 0.7.

lution with m = 2 and two types of nodes equally proportioned, i.e., p1 = 0.5.
Assume that at the instants of time t ∈ {100, 700, 3000}, a total of 8, 10, and 3
edges are removed of the network, respectively. Figure 5(a) shows the image of
the average degree by type under the Lyapunov function V. Because it is not
possible to identify how the deletion of edges affects the Lyapunov function,
we use the function f given in eq. (12) to map the average degree inside two
fringes around the image of the expected average degree under V. We note
in Figure 5(b)-(c) that our approach detects the instants at which anomalous
events occur in the the homophily model. In particular, the behavior of the
transformation of the average degree of nodes of type 1 helps us to detect two
instants at which the anomalies take place, and the transformation of the av-
erage degree of nodes of type 2 allows us to detect the three instants at which
we remove existing edges in the network.

5. Conclusions

In this work we consider a heterogeneous network model in which the set of
nodes is partitioned into two types of nodes. We characterize the degree distri-
bution for each group of nodes and show that it follows a power law, providing
the scaling exponent for each group. By using a mixture of the distributions
for nodes of the same type, we also determine the degree distribution for the
entire network. Our simulations suggest that the tail of the complementary
cumulative degree distribution of the entire network follows a power law with a
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Figure 5: (a) Image of the average degree by type of nodes under the
Lyapunov function V given in Theorem 4; and Image of the average
degree under the function f given eq. (12) for nodes of (b) type 1;
and (c) type 2.

scaling exponent equal to the smaller exponent of the degree distributions for
the groups. Moreover, based on the stability properties of the expected average
degree, we apply an approach to detect instants at which the deletion of edges
occurs in the model. Establishing the stability of the expected average degree
for other proportions of groups, remains as a future research direction.
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