$L^{\gamma}$ INEQUALITIES
CONCERNING POLYNOMIALS

Abstract

In this paper, first, we obtain $L^{\gamma}$ analogue of an inequality concerning a polynomial $p(z)=\sum\limits_{\nu=0}^{n}a_{\nu}z^{\nu}$ of degree $n$ having no zero in $\vert z\vert<k$, $k\geq 1$ proved by Govil et al. [Illinois Jour. of Math., 23, No 2 (1979), 319-329].

Second, we also prove $L^{\gamma}$ analogue of another inequality for a polynomial $p(z)=\sum\limits_{\nu=0}^{n}a_{\nu}z^{\nu}$ of degree $n$ having all its zeros in $\vert z\vert\leq k$, $k\leq 1$ proved in the same paper. The results improve other known inequalities as well.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 5
Year: 2021

DOI: 10.12732/ijam.v34i5.7

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] V.V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
  2. [2] A. Aziz and N.A. Rather, Some Zygmund type Lq inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
  3. [3] S. Bernstein, Lecons sur les propri´et´es extr´emales et la meilleure approx- imation desfonctions analytiques d’une variable r´eelle, Gauthier Villars, Paris (1926).
  4. [4] N.G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc., 50 (1947), 1265-1272; Indag. Math., 9 (1947), 591-598.
  5. [5] R.B. Gardner and N.K. Govil, An Lq inequality for a polynomial and its derivative, J. Math. Anal. Appl., 194 (1995), 720-726.
  6. [6] R. Gardner and A. Weems, A Bernstein-type Lp inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478.
  7. [7] N.K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.
  8. [8] N.K. Govil, Q.I. Rahman and G. Schmeisser, On the derivative of a polynomial, Illinois J. of Math., 23, No 2 (1979), 319-329.
  9. [9] E. Hille, Analytic Function Theory, Vol. II, Ginn. and Company, New York, Toronto (1962).
  10. [10] P.D. Lax, Proof of a Conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
  11. [11] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., (1969), 57-60.
  12. [12] M.A.Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284.
  13. [13] Q.I. Rahman and G. Schmeisser, Lp inequalities for polynomials, J. Ap- prox. Theory, 53 (1998), 26-32.
  14. [14] N.A. Rather, Extremal Properties and Location of the Zeros of Polynomi- als, PhD. Thesis, University of Kashmir (19980.
  15. [15] W. Rudin, Real and Complex Analysis, Tata Mcgraw-Hill Publ. Co. (Reprinted in India) (1977).
  16. [16] A.E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc., New York (1958).
  17. [17] P. Tur´an, ¨ Uber die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.
  18. [18] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400.