STABILITY OF BINET-CAUCHY FUNCTIONAL
EQUATION ON NON-ARCHIMEDEAN BANACH ALGEBRAS

Abstract

In this paper, we introduced Binet-Cauchy additive functional equation
\begin{align*}
\left(\sum\limits^{n}_{i=1}f(x_iy_i)\right)&\left(\sum\limits^{n...
...<j\le n}f\left(x_i u_j-x_j u_i\right)f\left(y_i v_j-y_j v_i\right)
\end{align*}
and established related generalized Ulam-Hyers stability results in non-Archimedean Banach modules over a Banach algebra.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.8

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press (1989).
  2. [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
  3. [3] M. Arunkumar and S. Karthikeyan, Solution and stability of n-dimensional additive functional equation, International Journal of Applied Mathematics, 25, No 2 (2012), 163-174.
  4. [4] R. Badora, On approximate derivations, Math. Inequal. Appl., 9 (2006), 167-173.
  5. [5] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl., 276 (2002), 589-597.
  6. [6] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385-397.
  7. [7] I.S. Chang, H.M. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, J. Ineq. Appl. Math., 33 (2002), 1-12.
  8. [8] Chun-Gil Park, On the stability of the linear mapping in Banach modules, J. Math.Anal. Appl., 275 (2002), 711-720.
  9. [9] Chun-Gil Park, modules over a C*-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl., 278 (2003) 93108.
  10. [10] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ (2002).
  11. [11] M. Eshaghi Gordji, H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abstr. Appl. Anal. 2009 (2009), Article ID 923476.
  12. [12] M. Eshaghi Gordji, H. Khodaei, R. Khodabakhsh, C. Park, Fixed points and quadratic equations connected with homomorphisms and derivations on non-Archimedean algebras. Adv. in Difference Equations 2012 (2012), Article ID 128.
  13. [13] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
  14. [14] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 222-224.
  15. [15] K.W. Jun, H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl., 9, No 1 (2006), 153165.
  16. [16] Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math., 27, No 3-4 (1995), 368-372.
  17. [17] L. Jung-Rye and Sh. Dong-Yun, Isomorphims and derivations in C∗algebras, Acta Mathematica Scientia, 31, B(1) (2011), 309-320.
  18. [18] M. Ramdoss, D. Pachaiyappan and H. Dutta, Functional equation and its modular stability with and without P-condition, Filomat, 34, No 3 (2020), 919-930.
  19. [19] M. Ramdoss, D. Pachaiyappan, I. Hwang and Ch. Park, Stability of an n-variable mixed type functional equation in probabilistic modular spaces, AIMS Mathematics, 5, No 6 (2020), 5903-5915.
  20. [20] C. Park, Lie ∗-homomorphisms between Lie C∗-algebras and Lie ∗derivations on Lie C∗-algebras, J. Math. Anal. Appl., 293 (2004), 419-434.
  21. [21] C. Park, Homomorphisms between Lie JC∗-algebras and CauchyRassias stability of Lie JC∗-algebra derivations, J. Lie Theory, 15 (2005), 393-414.
  22. [22] C. Park, J. Hou, S. Oh, Homomorphisms between JC∗-algebras and between Lie C∗-algebras, Acta Math. Sinica, 21 (2005), 1391-1398.
  23. [23] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46 (1982), 126-130.
  24. [24] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
  25. [25] P. Narasimman, J.M. Rassias, Ulam-Hyers Stabilities of a generalized composite functional equation in non-Archimedean spaces, Adv. Pure Appl. Math., 7, No 4 (2016), 249-257.
  26. [26] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, 3, No 8 (2008), 36-47.
  27. [27] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York (1964).
  28. [28] Won-Gil Park, and Jae-Hyeong Bae, Stability of a Bi-Additive Functional Equation in Banach Modules Over a C*-Algebra, doi:10.1155/2012/835893.
  29. [29] G. Zamani Eskandani, Hamid Vaezi and Y.N. Dehghan, Stability of a mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. of Math., 14, No 4 (2010), 1309-1324.