STABILITY ANALYSIS OF CHAOTIC NEW HAMILTONIAN
SYSTEM BASED ON HÉNON-HEILES MODEL
USING ADAPTIVE CONTROLLED HYBRID
PROJECTIVE SYNCHRONIZATION

Abstract

This research article deals with a systematic approach to investigate hybrid projective synchronization among identical new chaotic Hamiltonian systems using adaptive control method. First, nonlinear adaptive controllers are designed to estimate the unknown parameters of the given system and also to attain the stability criteria of the error dynamics of the system. Second, the required hybrid projective synchronization in the considered identical systems via adaptive control method is achieved by using Lyapunov stability theory. Additionally, numerical simulations are conducted using MATLAB software to show the efficient performances of the proposed adaptive controller design. Remarkably, both the analytical as well as computational results are in excellent agreement. Moreover, the considered technique has many applications in the field of secure communication and image encryption.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 34
Issue: 4
Year: 2021

DOI: 10.12732/ijam.v34i4.15

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] K. Bouallegue, A new class of neural networks and its applications, Neurocomputing, 249 (2017), 28-47.
  2. [2] M. Chen, Z. Han, Controlling and synchronizing chaotic genesio system via nonlinear feedback control, Chaos, Solitons & Fractals, 17, No 4 (2003), 709-716.
  3. [3] Z. Ding and Y. Shen, Projective synchronization of nonidentical fractionalorder neural networks based on sliding mode controller, Neural Networks, 76 (2016), 97-105.
  4. [4] D. Ghosh, A. Mukherjee, N. R. Das, B. N. Biswas, Generation & control of chaos in a single loop optoelectronic oscillator, Optik, 165 (2018), 275-287.
  5. [5] M. Henon, C. Heiles, The applicability of the third integral of motion: some numerical experiments, The Astronomical J., 69 (1964), 73.
  6. [6] A. W. Hubler, Adaptive control of chaotic system, Helv Phys. Acta, 62 (1989), 343-346.
  7. [7] L. S. Jahanzaib, P. Trikha, H. Chaudhary, S. M. Haider et al., Compound synchronization using disturbance observer based adaptive sliding mode control technique, J. Math. Comput. Sci., 10, No 5 (2020), 1463-1480.
  8. [8] A. Khan, H. Chaudhary, Adaptive control and hybrid projective combination synchronization of chaos generated by generalized Lotka-Volterra biological systems, Emer. Trends Infor. Tech., Bloomsbury India (2019), 174-184.
  9. [9] A. Khan, H. Chaudhary, Hybrid projective combination-combination synchronization in non-identical hyperchaotic systems using adaptive control, Arabian J. Math., 9, No 3 (2020), 1-15.
  10. [10] T. Khan, H. Chaudhary, Estimation and identifiability of parameters for generalized Lotka-Volterra biological systems using adaptive controlled combination difference anti-synchronization, Differ. Equ. Dyn. Syst., 28 (2020), 515-526.
  11. [11] S. Kumar, A. E. Matouk, H. Chaudhary, S. Kant, Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques, Int. J. Adapt. Control Signal Process., 35, No 4 (2020), 484-497.
  12. [12] G.-H. Li, S.-P. Zhou, Anti-synchronization in chaotic systems, Chaos, Solitons & Fractals, 32, No 2 (2007), 516-520.
  13. [13] S.-Y. Li, C.-H. Yang, C.-T. Lin, L.-W. Ko, T.-T. Chiu, Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy, Nonlinear Dynamics, 70, No 3 (2012), 2129-2143.
  14. [14] Z. Li, D. Xu, A secure communication scheme using projective chaos synchronization, Chaos, Solitons & Fractals, 22, No 2 (2004), 477-481.
  15. [15] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20, No 2 (1963), 130-141.
  16. [16] J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Phase synchronization between two neurons induced by coupling of electromagnetic field, Applied Math. Comput., 307 (2017), 321-328.
  17. [17] B. Naderi, H. Kheiri, A. Heydari, Secure communication based on synchronization of three chaotic systems, Int. J. Nonlinear Sci., 27, No 1 (2019), 53-64.
  18. [18] B. K. Patle, D. R. K. Parhi, A. Jagadeesh, S. K. Kashyap, Matrix-binary codes based genetic algorithm for path planning of mobile robot, Computers & Electrical Eng., 67 (2018), 708-728.
  19. [19] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64, No 8 (1990), 821-824.
  20. [20] L. Perko, Differential Equations and Dynamical Systems, Vol 7, Springer Science & Business Media (2013).
  21. [21] A. Provata, P. Katsaloulis, D. A. Verganelakis, Dynamics of chaotic maps for modelling the multifractal spectrum of human brain diffusion tensor images, Chaos, Solitons & Fractals, 45, No 2 (2012), 174-180.
  22. [22] S. Rasappan, S. Vaidyanathan, Synchronization of hyperchaotic liu system via backstepping control with recursive feedback, In: Int. Conf. on Ecofriendly Comput. Commu. Syst., 212-221, Springer, 2012.
  23. [23] B. Sahoo, S. Poria, The chaos and control of a food chain model supplying additional food to top-predator, Chaos, Solitons & Fractals, 58 (2014), 52-64.
  24. [24] A. K. Singh, V. K. Yadav, S. Das, Synchronization between fractional order complex chaotic systems, Int. J. Dyn. Control, 5, No 3 (2017), 756-770.
  25. [25] K. S. Sudheer, M. Sabir, Hybrid synchronization of hyperchaotic lu system, Pramana, 73, No 4:781, 2009.
  26. [26] X.-J. Tong, M. Zhang, Z. Wang, Y. Liu, J. Ma, An image encryption scheme based on a new hyperchaotic Finance system, Optik, 126, No 20 (2015), 2445-2452.
  27. [27] S. Vaidyanathan, A. Sambas, S. Zhang, M. A. Mohamed, M. Mamat, A new hamiltonian chaotic system with coexisting orbits and its dynamical analysis, Int. J. Eng. Tech., 7, No 4 (2018), 2430-2436.
  28. [28] X. Wang, S. Vaidyanathan, C. Volos, V.-T. Pham, T. Kapitaniak, Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors, Nonlinear Dynamics, 89, No 3 (2017), 1673-1687.
  29. [29] G.-C. Wu, D. Baleanu, Z.-X. Lin, Image encryption technique based on fractional chaotic time series, J. Vibr. Control, 22, No 8 (2016), 20922099.