International Journal of Applied Mathematics

Volume 34 No. 3 2021, 471-483

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v34i3.4

UNIQUENESS OF DIFFERENCE DIFFERENTIAL POLYNOMIALS OF L-FUNCTIONS CONCERNING WEIGHTED SHARING

Nintu Mandal¹ §, Nirmal Kumar Datta²

¹Department of Mathematics
Chandernagore College, Chandernagore
Hooghly – 712136, West Bengal, INDIA

²Department of Physics, Suri Vidyasagar College
Suri, Birbhum – 731101, West Bengal, INDIA

Abstract: In this paper, we mainly investigate the value distributions of difference differential polynomials of L-functions. Concerning small and rational functions sharing we prove uniqueness theorems on difference differential polynomials of L-functions. The results improve some recent results of W.J. Hao, J.F. Chen [3], W.Q. Zhu, J.F. Chen [17] and N. Mandal, N.K. Datta [10].

AMS Subject Classification: 11M36, 30D35

Key Words: meromorphic functions; L-functions; weighted sharing; uniqueness

1. Introduction

The Riemann hypothesis and its extension to the general classes of L-functions is the most important open problem in today's pure mathematics. In the modern number theory the L-functions play very important role.

 $L(z)=\sum_{n=1}^{\infty}a(n)/n^z$ is said to be an L-function in the Selberg class if it satisfies the following assumptions:

(i) $a(n) \ll n^{\epsilon}$, for every $\epsilon > 0$;

Received: September 21, 2020

© 2021 Academic Publications

[§]Correspondence author

- (ii) There exists an integer $k \geq 0$ such that $(z-1)^k L(z)$ is a finite order entire function;
- (iii) Every L-function satisfies the functional equation $\lambda_L(z) = \omega \overline{\lambda_L(1-\overline{z})}$, where $\lambda_L(z) = L(z)Q^z \prod_{i=1}^k \Gamma(\gamma_i z + \nu_i)$ with positive real numbers Q, γ_i and complex numbers ν_i , ω with $Re\nu_i \geq 0$ and $|\omega| = 1$;
- (iv) $L(z) = \prod_p L_p(z)$, where $L_p(z) = exp(\sum_{k=1}^{\infty} b(p^k)/p^{kz})$ with coefficients $b(p^k)$ satisfying $b(p^k) \ll p^{k\theta}$ for some $\theta < 1/2$ and p denotes prime number.

If L satisfy only the assumptions (i)-(iii), then L is an L-function in the extended Selberg class. In this paper by an L function we always mean an L function in the extended Selberg class with a(1) = 1. Using Nevanlinna Value Distribution theory we study how uniquely difference differential polynomials of L-functions be determined in the extended Selberg class. We use the standard notations and definitions of the value distribution theory, [4].

Let $\alpha \in \mathbf{C} \cup \{\infty\}$ and ξ , ψ be meromorphic functions in the complex plane. The set of all the α points of ξ with multiplicities not exceeding l is denoted by $E_l(\alpha;\xi)(\overline{E}_l(\alpha;\xi))$, where l is a positive integer and we consider(ignore) the multiplicities of the α points. We define the hyper order $\rho_2(\xi)$ of ξ by $\rho_2(\xi) = \limsup_{r \to \infty} \frac{\log \log T(r,\xi)}{\log r}$. We denote by $S(r,\xi)$ any function satisfying $S(r,\xi) = o(T(r,\xi))$ as $r \to \infty$, outside a possible exceptional set of finite linear measure. We say that ξ and ψ share α CM if they have the same set of α points with the same multiplicities and if we do not consider the multiplicities then we say that ξ and ψ share α IM.

Definition 1. [7] Let ξ be a meromorphic function defined in the complex plane. Let n be a positive integer and $\alpha \in \mathbf{C} \cup \{\infty\}$. By $N(r, \alpha; \xi \mid \leq n)$ we denote the counting function of the α points of ξ with multiplicity $\leq n$ and by $\overline{N}(r, \alpha; \xi \mid \leq n)$ the reduced counting function. Also by $N(r, \alpha; \xi \mid \geq n)$ we denote the counting function of the α points of ξ with multiplicity $\geq n$ and by $\overline{N}(r, \alpha; \xi \mid \geq n)$ the reduced counting function. We define

$$N_n(r,\alpha;\xi) = \overline{N}(r,\alpha;\xi) + \overline{N}(r,\alpha;\xi \geq 2) + \dots + \overline{N}(r,\alpha;\xi \geq n).$$

Definition 2. [7] Let ξ be a meromorphic function defined in the complex plane and P(Z) be a small function of ξ or rational function. Then we denote by $N(r,P;\xi\mid\leq m), \ \overline{N}(r,P;\xi\mid\leq m), \ N(r,P;\xi\mid\geq m), \ \overline{N}(r,P;\xi\mid\geq m), \ N_m(r,P;\xi)$ etc. the counting functions $N(r,0;\xi-P\mid\leq m), \ \overline{N}(r,0;\xi-P\mid\leq m), \ N(r,0;\xi-P\mid\geq m), \ \overline{N}(r,0;\xi-P\mid\geq m), \ N_m(r,0;\xi-P)$ etc., respectively.

Definition 3. [5, 6] Let ξ and ψ be two meromorphic functions defined in the complex plane and n be an integer (≥ 0) or infinity. we denote by $E_n(\alpha; \xi)$ the set of all zeros of $\xi - \alpha$ where $\alpha \in \mathbf{C} \cup \{\infty\}$ and a zero of multiplicity k is counted k times if $k \leq n$ and n+1 times if k > n. we say that ξ , ψ share α with weight n if $E_n(\alpha; \xi) = E_n(\alpha; \psi)$.

We say ξ , ψ share (α, n) to mean that ξ , ψ share α with weight n. Clearly ξ , ψ share α IM or CM if and only if ξ , ψ share $(\alpha, 0)$ or (α, ∞) , respectively.

In 2010 Li [8] proved the following theorem.

Theorem 4. [8] Let ξ be a nonconstant meromorphic function having finitely many poles and L be a nonconstant L-function. If ξ and L share (α, ∞) and $(\beta, 0)$ then $L \equiv \xi$, where α and β are two distinct finite values.

Definition 5. [10] Let ξ be a meromorphic function defined in the complex plane and P(z) be a rational function or a small function of ξ . Then we denote by $E_{m}(P;\xi)$, $\overline{E}_{m}(P;\xi)$ and $E_{m}(P;\xi)$ the sets $E_{m}(0;\xi-P)$, $\overline{E}_{m}(0;\xi-P)$ and $E_{m}(0;\xi-P)$, respectively.

We write ξ , ψ share (P, n) to mean that $\xi - P$, $\psi - P$ share the value 0 with weight n. Clearly if ξ , ψ share (P, n) then ξ , ψ share (P, m) for all integers $m, 0 \leq m < n$. Also we note that ξ , ψ share P IM or CM if and only if ξ , ψ share (P, 0) or (P, ∞) , respectively.

Considering differential monomial in 2017, Liu, Li and Yi [9] proved the following uniqueness theorems.

Theorem 6. [9] Let $j \ge 1$ and $k \ge 1$ be integers such that j > 3k + 6. Also let L be an L-function and ξ be a nonconstant meromorphic function. If $\{\xi^j\}^{(k)}$ and $\{L^j\}^{(k)}$ share $(1,\infty)$, then $\xi \equiv \alpha L$ for some nonconstant α satisfying $\alpha^j = 1$.

Theorem 7. [9] Let $j \ge 1$ and $k \ge 1$ be integers such that j > 3k + 6. Also let L be an L-function and ξ be a nonconstant meromorphic function. If $\{\xi^j\}^{(k)}(z)$ and $\{L^j\}^{(k)}(z)$ share (z,∞) , then $\xi \equiv \alpha L$ for some nonconstant α satisfying $\alpha^j = 1$.

Considering differential polynomials in 2018, W.J. Hao and J.F. Chen [3] obtained the following uniqueness results on L-function:

- **Theorem 8.** [3] Let ξ be a nonconstant meromorphic function and L be an L-function such that $[\xi^n(\xi-1)^m]^{(\tau)}$ and $[L^n(L-1)^m]^{(\tau)}$ share $(1,\infty)$, where $n,m,\tau\in\mathbf{Z}^+$. If $n>m+3\tau+6$ and $\tau\geq 2$, then, $\xi\equiv L$ or, $\xi^n(\xi-1)^m\equiv L^n(L-1)^m$.
- **Theorem 9.** [3] Let ξ be a nonconstant meromorphic function and L be an L-function such that $[\xi^n(\xi-1)^m]^{(\tau)}$ and $[L^n(L-1)^m]^{(\tau)}$ share (1,0), where $n,m,\tau\in\mathbf{Z}^+$. If $n>4m+7\tau+11$ and $\tau\geq 2$, then, $\xi\equiv\mathcal{L}$ or, $\xi^n(\xi-1)^m\equiv L^n(L-1)^m$.
- In 2019 W.Q. Zhu and J.F. Chen [17] using truncated sharing proved the following uniqueness theorem.
- **Theorem 10.** [17] Let L be an L-function and ξ be a transcendental meromorphic function defined in the complex plane C. Also let $n, k(\geq 2), l(\geq 2)$ be positive integers such that $n \geq 7k + 17$. If $\overline{E}_{l}(1, (\xi^n(\xi 1))^{(k)}) = \overline{E}_{l}(1, (L^n(L-1))^{(k)})$, then $f \equiv L$.

Considering truncated sharing of small functions in 2020 Mandal and Datta [10] proved the following theorem.

Theorem 11. [10] Let L be a nonconstant L-function and ρ be a small function of L such that $\rho \not\equiv 0, \infty$. If $\overline{E}_{4}(\rho; L) = \overline{E}_{4}(\rho; (L^m)^{(k)})$, $E_{2}(\rho; L) = E_{2}(\rho; (L^m)^{(k)})$ and $2N_{2+k}(r, 0; L^m) \leq (\sigma + o(1))T(r, L)$, where $m \geq 1$, $k \geq 1$ are integers and $0 < \sigma < 1$, then $L \equiv (L^m)^{(k)}$.

Now the following questions come naturally.

- **Question 12.** If we consider rational or small function sharing in Theorem 8, Theorem 9 and Theorem 10, then what happens?
- **Question 13.** Can we take difference differential polynomials in place of differential polynomials in Theorem 8, Theorem 9, Theorem 10 and Theorem 11?
- **Definition 14.** [5] Let two nonconstant meromorphic functions ξ and ψ share a value α IM. We denote by $\overline{N}_*(r,\alpha;\xi,\psi)$ the counting function of the α -points of ξ and ψ with different multiplicities, where each α -point is counted

only once.

Definition 15. Let two nonconstant meromorphic functions ξ and ψ share a value α IM. We denote by $\overline{N}(r,\alpha;\xi|>\psi)$ the counting function of the α -points of ξ and ψ with multiplicities with respect to ξ is greater than the multiplicities with respect to ψ , where each α -point is counted once only.

Definition 16. Let two nonconstant meromorphic functions ξ and ψ share a value α IM. We denote by $\overline{N}_E(r,\alpha;\xi,\psi|>m)$ the counting function of the α -points of ξ and ψ with multiplicities greater than m and the multiplicities with respect to ξ is equal to the multiplicities with respect to ψ , where each α -point is counted once only.

In this paper we try to solve Questions 12, 13 and prove the following theorems.

Theorem 17. Let L be a nonconstant L-function and ξ be a transcendental meromorphic function. Let $\tau, n, \eta, \mu_j (j = 1, 2,, \eta), \ \lambda = \sum_{j=1}^{\eta} \mu_j$ be positive integers such that $n > \lambda + \eta(2\tau + 4) + 4$ and $\omega_j \in \mathbf{C} - \{0\}$ $(j = 1, 2,, \eta)$ be distinct constants. Also let $\rho_2(L) < 1$, $\rho_2(\xi) < 1$, $[L^n(z) \prod_{j=1}^{\eta} L(z + \omega_j)^{\mu_j}]^{(\tau)}$ and $[\xi^n(z) \prod_{j=1}^{\eta} \xi(z + \omega_j)^{\mu_j}]^{(\tau)}$ share $(\rho(z), l)$ and ξ , L share $(\infty, 0)$, where $\rho(z)$ is a small function of ξ and L. If l = 0 and $n > \lambda + (\eta + 1)(5\tau + 7)$ or l = 1 and $n > \lambda + \frac{3}{2}(\eta + 1)(2\tau + 3)$, then one of the following holds:

(i)
$$[L(z)^n \prod_{j=1}^{\eta} L(z+\omega_j)^{\mu_j}]^{(\tau)} \equiv [\xi(z)^n \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}]^{(\tau)}$$
,

(ii)
$$[L(z)^n \prod_{j=1}^{\eta} L(z+\omega_j)^{\mu_j}]^{(\tau)} [\xi(z)^n \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}]^{(\tau)} \equiv \rho(z)^2$$
.

Theorem 18. Let L be a nonconstant L-function and ξ be a transcendental meromorphic function. Let $\tau, n, \eta, \mu_j (j = 1, 2,, \eta), \ \lambda = \sum_{j=1}^{\eta} \mu_j$ be positive integers such that $n > \lambda + \eta(2\tau + 4) + 4$ and $\omega_j \in \mathbf{C} - \{0\}$ $(j = 1, 2,, \eta)$ be distinct constants. Also let $\rho_2(L) < 1$, $\rho_2(\xi) < 1$, $[L^n(z) \prod_{j=1}^{\eta} L(z + \omega_j)^{\mu_j}]^{(\tau)}$ and $[\xi^n(z) \prod_{j=1}^{\eta} \xi(z + \omega_j)^{\mu_j}]^{(\tau)}$ share (R(z), l) and ξ , L share $(\infty, 0)$, where R(z) is a rational function. If l = 0 and $n > \lambda + (\eta + 1)(5\tau + 7)$ or l = 1 and $n > \lambda + \frac{3}{2}(\eta + 1)(2\tau + 3)$, then one of the following holds:

(i)
$$[L(z)^n \prod_{j=1}^{\eta} L(z+\omega_j)^{\mu_j}]^{(\tau)} \equiv [\xi(z)^n \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}]^{(\tau)}$$
,

(ii)
$$[L(z)^n \prod_{j=1}^{\eta} L(z+\omega_j)^{\mu_j}]^{(\tau)} [\xi(z)^n \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}]^{(\tau)} \equiv R(z)^2$$
.

2. Lemmas

In this section we present some necessary lemmas.

Henceforth we denote by Ω the function defined by

$$\Omega = (\frac{\Phi''}{\Phi'} - \frac{2\Phi'}{\Phi - 1}) - (\frac{\Psi''}{\Psi'} - \frac{2\Psi'}{\Psi - 1}).$$

Lemma 19. [12] Let L be an L-function with degree q. Then $T(r, L) = \frac{q}{\pi}r\log r + O(r)$.

Lemma 20. [10] Let L be an L-function. Then $N(r, \infty; L) = S(r, L) = O(\log r)$.

Lemma 21. Let ξ be a nonconstant meromorphic function and L be an L-function. If ξ and L share $(\infty,0)$, then $\overline{N}(r,\infty;\xi) = S(r,L) = O(\log r)$.

Proof. Since ξ and L share $(\infty,0)$, therefore by lemma 20 we have $\overline{N}(r,\infty;\xi) = \overline{N}(r,\infty;L) = S(r,L) = O(\log r)$. This completes the proof.

Lemma 22. [16] Let $\xi(z) = \frac{\alpha_0 + \alpha_1 z + + \alpha_n z^n}{\beta_0 + \beta_1 z + + \beta_m z^m}$ be a nonconstant rational function defined in the complex plane \mathbf{C} , where $\alpha_0, \alpha_1, ..., \alpha_n \neq 0$ and $\beta_0, \beta_1, ..., \beta_m \neq 0$ are complex constants. Then $T(r, \xi) = max\{m, n\} \log r + O(1)$.

Lemma 23. [13] Let ξ be a transcendental meromorphic function of hyper order $\rho_2(\xi) < 1$. Then for any $\alpha \in \mathbf{C} - 0$:

$$T(r,\xi(z+\alpha)) = T(r,\xi(z)) + S(r,\xi(z)),$$

$$N(r,\infty;\xi(z+\alpha)) = N(r,\infty;\xi(z)) + S(r,\xi(z)),$$

$$N(r, 0; \xi(z + \alpha)) = N(r, 0; \xi(z)) + S(r, \xi(z)).$$

Lemma 24. [11] Let Φ and Ψ be two nonconstant meromorphic functions sharing (1,1) and $(\infty,0)$. If $\Omega \not\equiv 0$, then

$$T(r,\Phi) \leq N_2(r,0;\Phi) + N_2(r,0;\Psi) + \frac{3}{2}\overline{N}(r,\infty;\Phi) + \overline{N}(r,\infty;\Psi)$$

$$+ \quad \overline{N}_*(r,\infty;\Phi,\Psi) + \frac{1}{2}\overline{N}(r,0;\Phi) + S(r,\Phi) + S(r,\Psi),$$

$$T(r,\Psi) \leq N_2(r,0;\Phi) + N_2(r,0;\Psi) + \frac{3}{2}\overline{N}(r,\infty;\Psi) + \overline{N}(r,\infty;\Phi) + \overline{N}_*(r,\infty;\Phi,\Psi) + \frac{1}{2}\overline{N}(r,0;\Psi) + S(r,\Phi) + S(r,\Psi).$$

Lemma 25. [11] Let Φ and Ψ be two nonconstant meromorphic functions sharing (1,0) and $(\infty,0)$. If $\Omega \not\equiv 0$, then

$$T(r,\Phi) \leq N_2(r,0;\Phi) + N_2(r,0;\Psi) + 3\overline{N}(r,\infty;\Phi) + 2\overline{N}(r,\infty;\Psi) + \overline{N}_*(r,\infty;\Phi,\Psi) + 2\overline{N}(r,0;\Phi) + \overline{N}(r,0;\Psi) + S(r,\Phi) + S(r,\Psi),$$

$$T(r,\Psi) \leq N_2(r,0;\Phi) + N_2(r,0;\Psi) + 3\overline{N}(r,\infty;\Psi) + 2\overline{N}(r,\infty;\Phi) + \overline{N}_*(r,\infty;\Phi,\Psi) + 2\overline{N}(r,0;\Psi) + \overline{N}(r,0;\Phi) + S(r,\Phi) + S(r,\Psi).$$

Lemma 26. [15] Let Φ be a nonconstant meromorphic function and k, p be two positive integers. Then

$$T(r, \Phi^{(k)}) \le T(r, \Phi) + k \overline{N}(r, \infty; \Phi) + S(r, \Phi),$$

$$N_p(r, 0; \Phi^{(k)}) \le T(r, \Phi^{(k)}) - T(r, \Phi) + N_{p+k}(r, 0; \Phi) + S(r, \Phi),$$

$$N_p(r, 0; \Phi^{(k)}) \le N_{p+k}(r, 0; \Phi) + k \overline{N}(r, \infty; \Phi) + S(r, \Phi),$$

$$N(r, 0; \Phi^{(k)}) \le N(r, 0; \Phi) + k \overline{N}(r, \infty; \Phi) + S(r, \Phi).$$

Lemma 27. [2] Let ξ be a transcendental meromorphic function of hyper order $\rho_2(\xi) < 1$ and $\phi(z) = \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}$, where n, η, μ_j $(j = 1, 2,, \eta)$, $\lambda = \sum_{j=1}^{\eta} s_j$ are positive integers and $c_j \in C - \{0\}$ $(j = 1, 2,, \eta)$ be distinct constants. Then

$$(n-\lambda)T(r,\xi) + S(r,\xi) \le T(r,\xi^n\phi) \le (n+\lambda)T(r,\xi) + S(r,\xi).$$

3. Proof of the Main Results

Proof of Theorem 17.

Let $\phi(z) = \prod_{j=1}^{\eta} \xi(z + \omega_j)^{\mu_j}$, $\psi(z) = \prod_{j=1}^{\eta} L(z + \omega_j)^{\mu_j}$, $\Phi(z) = \frac{(\xi(z)^n \phi(z))^{(\tau)}}{\rho(z)}$ and $\Psi(z) = \frac{(L(z)^n \psi(z))^{(\tau)}}{\rho(z)}$. Then Φ , Ψ share (1, l) and Φ , Ψ share $(\infty, 0)$ except for zeros and poles of $\rho(z)$.

Clearly by Lemma 19, L is a transcendental meromorphic function. We have by Lemma 26 and Lemma 27:

$$N_{2}(r,0;\Phi) \leq N_{2}(r,0;(\xi^{n}\phi)^{(\tau)}) + S(r,\xi)$$

$$\leq T(r,(\xi^{n}\phi)^{(\tau)}) - T(r,\xi^{n}\phi) + N_{2+\tau}(r,0;\xi^{n}\phi) + S(r,\xi)$$

$$\leq T(r,\frac{(\xi^{n}\phi)^{(\tau)}}{\rho(z)}) - (n-\lambda)T(r,\xi) + N_{2+\tau}(r,0;\xi^{n}\phi)$$

$$+ S(r,\xi). \tag{1}$$

Hence we get from (1)

$$(n-\lambda)T(r,\xi) \le T(r,\Phi) - N_2(r,0;\Phi) + N_{2+\tau}(r,0;\xi^n\phi) + S(r,\xi). \tag{2}$$

Similarly we get

$$(n-\lambda)T(r,L) \le T(r,\Psi) - N_2(r,0;\Psi) + N_{2+\tau}(r,0;L^n\psi) + S(r,L).$$
 (3)

Now we have to consider the following two cases:

Case 1. Let $\Omega \not\equiv 0$. In this case we have to consider the following two subcases.

Subcase 1.1. Let l = 0. Hence by Lemma 20, Lemma 21 and Lemma 25, we have from (2):

$$(n-\lambda)T(r,\xi)$$

$$\leq N_2(r,0;\Phi) + N_2(r,0;\Psi) + 3\overline{N}(r,\infty;\Phi)$$

$$+ 2\overline{N}(r,\infty;\Psi) + \overline{N}_*(r,\infty;\Phi,\Psi) + 2\overline{N}(r,0;\Phi)$$

$$+ \overline{N}(r,0;\Psi) - N_2(r,0;\Phi) + N_{2+\tau}(r,0;\xi^n\phi) + S(r,\xi) + S(r,L)$$

$$\leq N_2(r,0;\Phi) + N_2(r,0;\Psi) + 2\overline{N}(r,0;\Phi) + \overline{N}(r,0;\Psi)$$

$$- N_{2}(r,0;\Phi) + N_{2+\tau}(r,0;\xi^{n}\phi) + S(r,\xi) + S(r,L)$$

$$\leq N_{2}(r,0;(\xi^{n}\phi)^{(\tau)}) + N_{2}(r,0;(L^{n}\psi)^{(\tau)}) + 2\overline{N}(r,0;(\xi^{n}\phi)^{(\tau)})$$

$$+ \overline{N}(r,0;(L^{n}\psi)^{(\tau)}) - N_{2}(r,0;(\xi^{n}\phi)^{(\tau)}) + N_{2+\tau}(r,0;\xi^{n}\phi)$$

$$+ S(r,\xi) + S(r,L)$$

$$\leq N_{2}(r,0;(L^{n}\psi)^{(\tau)}) + 2\overline{N}(r,0;(\xi^{n}\phi)^{(\tau)}) + \overline{N}(r,0;(L^{n}\psi)^{(\tau)})$$

$$+ N_{2+\tau}(r,0;\xi^{n}\phi) + S(r,\xi) + S(r,L)$$

$$\leq N_{2+\tau}(r,0;L^{n}\psi) + 2N_{1+\tau}(r,0;\xi^{n}\phi) + N_{1+\tau}(r,0;L^{n}\psi)$$

$$+ N_{2+\tau}(r,0;\xi^{n}\phi) + S(r,\xi) + S(r,L)$$

$$\leq (2+\tau)(1+\eta)T(r,L) + 2(\tau+1)(\eta+1)T(r,\xi)$$

$$+ (\tau+1)(\eta+1)T(r,L) + (2+\tau)(1+\eta)T(r,\xi)$$

$$+ S(r,\xi) + S(r,L)$$

$$\leq (3+2\tau)(1+\eta)T(r,L) + (3\tau+4)(\eta+1)T(r,\xi)$$

$$+ S(r,\xi) + S(r,L)$$

$$\leq (4)$$

Similarly by Lemma 20, Lemma 21 and Lemma 25, we have from (3):

$$(n - \lambda)T(r, L) \leq (3 + 2\tau)(1 + \eta)T(r, \xi) + (3\tau + 4)(\eta + 1)T(r, L)$$

$$+ S(r, \xi) + S(r, L).$$
(5)

Hence we get from (4) and (5)

$$(n-\lambda)\{T(r,L) + T(r,\xi)\} \le (7+5\tau)(1+\eta)\{T(r,L) + T(r,\xi)\} + S(r,\xi) + S(r,L).$$
(6)

From (6) we arrive at a contradiction, since $n > \lambda + (7 + 5\tau)(1 + \eta)$.

Subcase 1.2. Let l=1.

By Lemma 20, Lemma 21 and Lemma 24 we have from (2):

$$(n - \lambda)T(r, \xi)$$

$$\leq N_{2}(r, 0; \Psi) + \frac{3}{2}\overline{N}(r, \infty; \Phi) + \overline{N}(r, \infty; \Psi)$$

$$+ \overline{N}_{*}(r, \infty; \Phi, \Psi) + \frac{1}{2}\overline{N}(r, 0; \Phi) + N_{2+\tau}(r, 0; \xi^{n}\phi)$$

$$+ S(r, \xi) + S(r, L)$$

$$\leq N_{2}(r, 0; (L^{n}\psi)^{(\tau)}) + \frac{1}{2}N_{\tau+1}(r, 0; \xi^{n}\phi)$$

$$+ \overline{N}(r, 0; (L^{n}\psi)^{(\tau)}) + N_{2+\tau}(r, 0; \xi^{n}\phi) + S(r, \xi) + S(r, L)$$

$$\leq (2+\tau)(1+\eta)T(r,L) + \frac{1}{2}(\tau+1)(\eta+1)T(r,\xi)
+ (2+\tau)(1+\eta)T(r,\xi) + S(r,\xi) + S(r,L)
\leq (2+\tau)(1+\eta)T(r,L) + \frac{1}{2}(3\tau+5)(\eta+1)T(r,\xi)
+ S(r,\xi) + S(r,L).$$
(7)

Similarly we have by Lemma 20, Lemma 21 and Lemma 24 from (3):

$$(n-\lambda)T(r,L) \leq (2+\tau)(1+\eta)T(r,\xi) + \frac{1}{2}(3\tau+5)(\eta+1)T(r,L) + S(r,\xi) + S(r,L).$$
(8)

Using (7) and (8) we get

$$(n-\lambda)\{T(r,L) + T(r,\xi)\} \leq \frac{1}{2}(9+5\tau)(1+\eta)\{T(r,L) + T(r,\xi)\} + S(r,\xi) + S(r,L).$$
(9)

Hence from (9) we arrive at a contradiction, since $n > \lambda + \frac{1}{2}(9 + 5\tau)(1 + \eta)$.

Case 2. Let
$$\Omega \equiv 0$$
. Then $\left(\frac{\Phi''}{\Phi'} - \frac{2\Phi'}{\Phi - 1}\right) - \left(\frac{\Psi''}{\Psi'} - \frac{2\Psi'}{\Psi - 1}\right) \equiv 0$.
Hence we have
$$\Phi - 1 \equiv \frac{\Psi - 1}{b - c(\Psi - 1)},$$
(10)

where $b(\neq 0)$ and c are constants.

Now we have to consider the following two cases.

Subcase 2.1. Let c = 0. Then from (10) we have

$$\Phi - 1 \equiv \frac{(\Psi - 1)}{h}.\tag{11}$$

If $b \neq 1$, then from (11)

$$\overline{N}(r,0;\Phi) = \overline{N}(r,1-b;\Psi). \tag{12}$$

By Lemma 20, Lemma 26 and the second fundamental theorem, we have from (3)

$$(n - \lambda)T(r, L)$$
= $T(r, \Psi) - N_2(r, 0; \Psi) + N_{\tau+2}(r, 0; L^n \psi) + S(r, L)$

$$\leq \overline{N}(r,0;\Psi) + \overline{N}(r,1-b;\Psi) + \overline{N}(r,\infty;\Psi)
- N_{2}(r,0;\Psi) + N_{\tau+2}(r,0;L^{n}\psi) + S(r,L)
\leq \overline{N}(r,0;\Psi) + \overline{N}(r,0;\Phi) - N_{2}(r,0;\Psi)
+ N_{\tau+2}(r,0;L^{n}\psi) + S(r,L)
\leq \overline{N}(r,0;(\xi^{n}\phi)^{(\tau)}) + \overline{N}(r,0;(L^{n}\psi)^{(\tau)}) + N_{\tau+2}(r,0;L^{n}\psi) + S(r,L)
\leq N_{\tau+1}(r,0;\xi^{n}\phi) + N_{\tau+1}(r,0;L^{n}\psi) + N_{\tau+2}(r,0;L^{n}\psi) + S(r,L)
\leq (\tau+1)(\eta+1)T(r,L) + (\tau+1)(\eta+1)T(r,\xi)
+ (\tau+2)(\eta+1)T(r,L) + S(r,L)
\leq (2\tau+3)(\eta+1)T(r,L) + (\tau+1)(\eta+1)T(r,\xi)
+ S(r,L) + S(r,\xi).$$
(13)

Similarly we have from (2)

$$(n - \lambda)T(r,\xi) \leq (2\tau + 3)(\eta + 1)T(r,\xi) + (\tau + 1)(\eta + 1)T(r,L)$$

$$+ S(r,L) + S(r,\xi).$$
(14)

From (13) and (14) we have

$$(n-\lambda)(T(r,L) + T(r,\xi)) \leq (3\tau + 4)(\eta + 1)(T(r,L) + T(r,\xi)) + S(r,\xi) + S(r,L).$$
(15)

From (15) we arrive at a contradiction since $n > \lambda + (3\tau + 4)(\eta + 1)$. Hence b = 1 and therefore we get from (11)

$$[L^n \prod_{j=1}^{\eta} L(z+\omega_j)^{\mu_j}]^{(\tau)} \equiv [\xi^n \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}]^{(\tau)}.$$

Subcase 2.2. Let $c \neq 0$ and b = -c.

If c = 1, then from (10) we have $\Phi \Psi \equiv 1$. Hence

$$[L^n \prod_{j=1}^{\eta} L(z+\omega_j)^{\mu_j}]^{(\tau)} [\xi^n \prod_{j=1}^{\eta} \xi(z+\omega_j)^{\mu_j}]^{(\tau)} \equiv \rho(z)^2.$$

If $c \neq 1$, then from (10) we have $\frac{1}{\Phi} = \frac{-c\Psi}{(1-c)\Psi-1}$.

Hence $\overline{N}(r, 0; \Phi) = \overline{N}(r, \frac{1}{1-c}; \Psi)$.

Now proceeding as in Subcase 2.1. we arrive at a contradiction.

If c = 1, then from (10) we have

$$\Phi \equiv \frac{-b}{\Psi - b - 1}.\tag{16}$$

By Lemma 21 we have from (16)

$$\overline{N}(r,C+1;\Psi) = \overline{N}(r,\infty;\Phi) = \overline{N}(r,\infty;\xi) + S(r,L) = S(r,L).$$

Now proceeding as in Subcase 2.1. we arrive at a contradiction. If $c \neq 1$, then from (10) we have

$$\Phi - (1 - \frac{1}{c}) \equiv \frac{-b}{c^2(\Psi - \frac{b+c}{c})}.$$

Therefore by Lemma 21 we have

$$\overline{N}(r, \frac{b+c}{c}; \Psi) = \overline{N}(r, \infty; \Phi) = \overline{N}(r, \infty; \xi) + S(r, L) = S(r, L).$$

Hence proceeding as in Subcase 2.1. we arrive at a contradiction.

This completes the proof of the theorem.

Proof of Theorem 18.

Since ξ and L are transcendental meromorphic functions and R(z) is a rational function therefore R(z) is a small function of ξ and L.

Hence by Theorem 17 we get the required result.

References

- [1] A. Banerjee, Uniqueness of meromorphic functions sharing two sets with finite weight, *Portugal. Math. (N.S.)*, **65**, No 1 (2008), 81-93; DOI: 10.4171/PM/1800.
- [2] R.S. Dyavanal, A.M. Hattikal, On the uniqueness of product of difference polynomials of meromorphic functions, *Konuralp J. Math.*, 4, No 2 (2016), 42-55.
- [3] W.J. Hao and J.F. Chen, Uniqueness of L-functions concerning certain differential polynomials, *Dis. Dyn. Nat. Soc.*, (2018), Art. ID 4673165, 12 pp.; DOI: 10.1155/2018/4673165.

- [4] W.K. Hayman, *Meromorphic Functions*, The Clarendon Press, Oxford (1964).
- [5] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193-206; DOI: 10.1017/S0027763000027215.
- [6] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 241-253; DOI: 10.1080/17476930108815411.
- [7] I. Lahiri, N. Mandal, Small functions and uniqueness of meromorphic functions, *J. Math. Anal. Appl.*, **340** (2008), 780-792; DOI: 10.1016/j.jmaa.2007.09.017.
- [8] B.Q. Li, A result on value distribution of L-functions, Proc. Amer. Math. Soc., 138 (2010) 2071-2077; DOI: 10.1090/S0002-9939-09-10222-8.
- [9] F. Liu, X.M. Li, H.X. Yi, Value distribution of L-functions concerning shared values and certain differential polynomials, *Proc. Japan Acad. Ser.* A, 93 (2017), 41-46; DOI: 10.3792/pjaa.93.41.
- [10] N. Mandal, N.K. Datta, Uniqueness of L-function and its certain differential monomial concerning small functions, J. Math. Comput. Sci., 10, No 5 (2020), 2155-2163; DOI: 10.28919/jmcs/4836.
- [11] P. Sahoo, Meromorphic functions that share fixed points with finite weights, *Bull. Math. Anal. Appl.*, **2** (2010), 106-118.
- [12] J. Steuding, Value-distribution of L-functions, Spinger, Berlin (2007).
- [13] X.Y. Xu, On the value distribution and uniqueness of difference polynomials of meromorphic functions, *Adv. Diff. Equ.*, **90**, No 1 (2013), 13 pp.; DOI: 10.1186/1687-1847-2013-90.
- [14] L. Yang, Normality for families of meromorphic functions, *Sci. Sinica Ser.* A, **29**, No 12 (1986), 1263-1274.
- [15] C.C. Yang, H.X. Yi, *Uniqueness Theory of Meromorphic Functions*, Kluwer Academic Publ., Dordrecht (2003); Chinese original: Science Press, Beijing (1995).
- [16] L. Yang, Value Distribution Theory, Spinger-Verlag, Berlin (1993).

[17] W.Q. Zhu, J.F. Chen, Differential polynomials of L-functions with truncated shared values, *Open Math.*, **17** (2019), 1113-1125; DOI: 10.1515/math-2019-0087.