International Journal of Applied Mathematics

Volume 34 No. 3 2021, 441-447

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v34i3.2

FIRST ORDER DIFFERENTIAL EQUATION SUDORDINATION ASSOCIATED WITH CASSINI CURVE

Abstract: We denote p(z) as analytic functions defined on the open unit disk with p(0) = 1. In this paper, we determined the condition for β so that the results hold for the expressions $1+\beta zp'(z), 1+\beta zp'(z)/p(z)$ and $1+\beta zp'(z)/p^2(z)$ are subordinate to $\sqrt{1+cz}$.

AMS Subject Classification: 30C45

Key Words: analytic functions; univalent functions; first order differential equation; subordination; Cassini curve

1. Introduction

Let A be the class of all the analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \qquad (z \in D),$$

in a unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the condition f(0) = 0 = f'(0) - 1. We denote S as the subset of A of univalent functions. Also, we denoted C as the class of convex functions and S^* as the class of starlike functions. An analytic function f is subordinate to an analytic function g, we

Received: June 10, 2020

© 2021 Academic Publications

[§]Correspondence author

write $f(z) \prec g(z)$ for $z \in D$, if there exists an analytic function w in D such that w(0) = 0 and |w(z)| < 1 for |z| < 1 and f(z) = g(w(z)). In particular, if g is univalent in D, we say that $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(D) \subset g(D)$.

Goluzin [1] found that if the first order differential subordination $zp'(z) \prec zq'(z)$ holds and zq'(z) is convex, then $p(z) \prec q(z)$ holds where q is the best dominant. Eventually, researchers continued to study about this and the general theory is discussed detailed by Miller and Mocanu in [2]. Nunokawa et al. [3] proved that if $1+zp'(z) \prec 1+z$ hold, the subordination $p(z) \prec 1+z$ also hold. There are more results obtained by many other researchers, see [4], [5], [6], [7], [8], [9] and [10].

Sokól and Stankiewicz [11] introduced a class called S_L^* which consists the function of $f \in A$ such that w(z) := zf'(z)/f(z) lies in the region bounded by the right half of the lemniscate of Bernoulli given by $|w^2 - 1| < 1$. This class is associated with the function $\sqrt{1+z}$.

Besides, Aouf et al. [12] defined the class $S^*(q_c)$ for $c \in (0,1]$ as:

$$S^*(q_c) = \left\{ f \in A : \left| \left[\frac{zf'(z)}{f(z)} \right]^2 - 1 \right| < c, z \in D \right\}.$$

It can be established that

$$f \in S^*(q_c) \Leftrightarrow \frac{zf'(z)}{f(z)} \prec \sqrt{1+cz} \quad (z \in D).$$

We also denoted θ_c as the set of all points in the right half-plane such that the product of the distances from each point to the focuses -1 and 1 is less than c:

$$\theta_c := \{ w \in \mathbb{C} : Re \ w > 0, |w^2 - 1| < c \},$$

thus the boundary $\partial \theta_c$ is the right loop of the Cassinian ovals $(x^2 + y^2)^2 - 2(x^2 - y^2) = c^2 - 1$ and for c = 1, $S^*(q_1) \equiv S_L^*$.

For an analytic function $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$, we determine the condition of β so that $p(z) \prec P(z)$ where P(z) is a function with positive real part like $\sqrt{1+z}$ and $\varphi_0(z) := 1 + \frac{z}{k} \left((k+z)/(k-z) \right) \ (k = \sqrt{2}+1)$, whenever $1 + \beta z p'(z)/p^j(z) \prec \sqrt{1+cz}$, where j = 0, 1, 2 (please see [13] for more about $\varphi_0(z)$).

2. Preliminary results and definitions

Our results deal with classes of $S^*(q_c)$ associated with S_L^* and $\varphi_0(z)$ respectively. Some sufficient conditions with for functions belong to the above defined classes can be obtained by applying the application on starlike functions with positive real part. The first result gives a bound of β so that $1 + \beta z p'(z) \prec \sqrt{1 + cz}$ implies that the function p is subordinate to the $\sqrt{1+z}$ function.

Before to get our result, we need the following lemma to prove the theorems.

Lemma 1. ([14]) Let q be analytic in D and let ψ and v be analytic in domain U containing q(D) with $\psi(w) \neq 0$ when $w \in q(D)$. Set $Q(z) := zq'(z)\psi(q(z))$ and h(z) := v(q(z)) + Q(z). Suppose that:

i. either h is convex or Q is starlike univalent in D, and

ii. Re (zh'(z)/Q(z)) > 0 for $z \in D$.

If p is analytic in D, with $p(0) = q(0), p(D) \subseteq U$ and

$$v(p(z)) + zp'(z)\psi(p(z)) \prec v(q(z)) + zq'(z)\psi(q(z)),$$

then $p(z) \prec q(z)$ and q is best dominant.

3. Main results

Theorem 1. Let the function p be analytic in D, p(0) = 1 and $1 + \beta z p'(z) \prec \sqrt{1 + cz}$, $c \in (0, 1]$. Then the following subordination results hold:

(a) If
$$\beta \ge \frac{2\left[\sqrt{1+c} - \ln(1+\sqrt{1+c}) + \ln 2 - 1\right]}{\sqrt{2} - 1}$$
,

then $p(z) \prec \sqrt{1+z}$.

(b) If
$$\beta \ge \frac{2\left[\sqrt{1-c} - \ln\left(1 - \sqrt{1-c}\right) + \ln 2 - 1\right]}{\sqrt{2} - 3}$$
,

then $p(z) \prec \varphi_0(z)$.

Proof. The function $q_B: \overline{D} \to \mathbb{C}$ defined by

$$q_B(z) = 1 + \frac{2}{\beta} \left[\sqrt{1 + cz} - \ln(1 + \sqrt{1 + cz}) + \ln 2 - 1 \right]$$

is analytic and it is the solution of $1+\beta zp'(z)=\sqrt{1+cz}$. Let v(w)=1 and $\psi(w)=\beta$. So the function $Q:\overline{D}\to\mathbb{C}$ is defined by $Q(z)=zq'_B(z)\psi(q_B(z))=\beta zq'_B(z)$. Since $\sqrt{1+cz}-1$ is starlike function in D, it follows that function Q is starlike. Besides, the function $h(z)=v(q_B(z))+Q(z)$ satisfies Re(zh'(z)/Q(z))>0 for $z\in D$. Thus, by using Lemma 1, it shows $1+\beta zp'(z)\prec 1+\beta zq'_B(z)$ implies $p(z)\prec q_B(z)$. We can say that $p(z)\prec P(z)$ for appropriate P and this holds if the subordination $q_B(z)\prec P(z)$ holds. If $q_B(z)\prec P(z)$, then $P(-1)< q_B(-1)< q_B(1)< P(1)$. This gives a necessary condition for $p\prec P$ hold. This necessary condition is sufficient.

(a). By taking $P(z) = \sqrt{1+z}$, the inequalities $q_B(-1) \geq P(-1)$ and $q_B(1) \leq P(1)$ reduce to $\beta \geq \beta_1$ and $\beta \geq \beta_2$, where

$$\beta_1 = 2 \left[\ln(1 + \sqrt{1 - c}) + 1 - \ln 2 - \sqrt{1 - c} \right]$$

and

$$\beta_2 = \frac{2\left[\sqrt{1+c} - \ln(1+\sqrt{1+c}) + \ln 2 - 1\right]}{\sqrt{2} - 1},$$

respectively. The subordination

 $q_B(z) \prec \sqrt{1+z}$ holds if $\beta \ge \max\{\beta_1, \beta_2\} = \beta_2$.

(b). Consider $P(z) = \varphi_0(z)$, then the inequalities $q_B(-1) \ge \varphi_0(-1)$ and $q_B(-1) \le \varphi_0(1)$ reduce to $\beta \ge \beta_1$ and $\beta \ge \beta_2$, where

$$\beta_1 = \frac{2\left[\sqrt{1-c} - \ln(1+\sqrt{1-c}) + \ln 2 - 1\right]}{2\sqrt{2} - 3}$$

and

$$\beta_2 = 2 \left[\sqrt{1+c} - \ln(1+\sqrt{1+c}) + \ln 2 - 1 \right],$$

respectively. Thus, the subordination $q_B(z) \prec \varphi_0(z)$ holds if $\beta \geq \max\{\beta_1, \beta_2\} = \beta_1$.

When c=1, we may get Corollary 5. The next result gives bound on β so that $1+\beta zp'(z)/p(z) \prec \sqrt{1+cz}$ implies p is subordinate to $\varphi_0(z)$ function. \square

Theorem 2. Let the function p be analytic in D, p(0) = 1 and $1 + \beta z p'(z)/p(z) \prec \sqrt{1+cz}$, $c \in (0,1]$. Then the following subordination result holds:

If
$$\beta \ge \frac{2\left[\sqrt{1-c} - \ln(\sqrt{1-c} + 1) + \ln 2 - 1\right]}{\ln(2\sqrt{2} - 2)}$$
, then $p(z) \prec \varphi_0(z)$.

Proof. The function $q_B: \overline{D} \to \mathbb{C}$ defined by

$$q_B(z) = \exp\left\{1 + \frac{2}{\beta}\left[\sqrt{1+cz} - \ln(1+\sqrt{1+cz}) + \ln 2 - 1\right]\right\}$$

is analytic and is the solution of $1 + \beta z p'(z)/p(z) = \sqrt{1+cz}$. Define v(w) = 1 and $\psi(w) = \beta/w$. The function $Q: \overline{D} \to \mathbb{C}$ defined by $Q(z) := zq'_B(z)\psi(q_B(z)) = \beta z q'_B(z)/q_B(z) = \sqrt{1+cz}-1$ is starlike in D. The function $h(z) := v(q_B(z)) + Q(z) = 1 + Q(z)$ satisfies Re(zh'(z)/Q(z)) > 0 for $z \in D$. Therefore, by using Lemma 1, we get

$$1 + \beta \frac{zp'(z)}{p(z)} \prec 1 + \beta \frac{zq'_B(z)}{q_B(z)}$$

that implies $p(z) \prec q_B(z)$. In the similar lines of the proof of Theorem 2, the proof of the result is completed. By substituting c = 1, we get the result in Corollary 6.

Next, we determine a bound on β so that $1 + \beta z p'(z)/p^2(z) \prec \sqrt{1+cz}$ implies p is subordinate to $\varphi_0(z)$.

Theorem 3. Let the function p be analytic in D, p(0) = 1 and $1 + \beta z p'(z)/p^2(z) \prec \sqrt{1+cz}, c \in (0,1]$. Then the following subordination results hold:

If
$$\beta \ge \frac{4(\sqrt{2}-1)(\sqrt{1-c}-\ln(\sqrt{1-c}+1)+\ln 2-1)}{2\sqrt{2}-3}$$
,

then $p(z) \prec \varphi_0(z)$.

Proof. The function $q_B: \overline{D} \to \mathbb{C}$ defined by

$$q_B(z) = \left(1 + \frac{2}{\beta} \left[\sqrt{1 + cz} - \ln(1 + \sqrt{1 + cz}) + \ln 2 - 1\right]\right)^{-1}$$

is analytic. It is the solution of $1 + \beta z p'(z)/p^2(z) = \sqrt{1+cz}$. Define v(w) = 1 and $\psi(w) = \beta/w^2$. The function $Q: \overline{D} \to \mathbb{C}$ defined by

$$Q(z) := zq'_B(z)\psi(q_B(z)) = \beta zq'_B(z)/q_B^2(z) = \sqrt{1+cz} - 1$$

is starlike in D, so Q is starlike function. The function $h(z) := v(q_B(z)) + Q(z) = 1 + Q(z)$ satisfies Re(zh'(z)/Q(z)) > 0 for $z \in D$. Therefore, by using Lemma 1, we get that

$$1 + \beta \frac{zp'(z)}{p^2(z)} \prec 1 + \beta \frac{zq'_B(z)}{q_B^2(z)}$$

implies $p(z) \prec q_B(z)$. As the similar lines of the proof of Theorem 2 the proof of the result is completed.

Also, let c = 1, we have the result in Corollary 7.

4. Corollaries

Corollary 4. ([10]) Let the function p be analytic in D, p(0) = 1 and $1 + \beta z p'(z) \prec \sqrt{1 + cz}$. Then the following subordination results hold:

(a) If
$$\beta \ge \frac{2\left[\sqrt{2} - 1 + \ln 2 - \ln (1 + \sqrt{2})\right]}{\sqrt{2} - 1} \approx 1.09116$$
,

then $p(z) \prec \sqrt{1+z}$.

(b) If
$$\beta \ge \frac{2(1-\ln 2)}{3-2\sqrt{2}} \approx 3.57694$$
, then $p(z) \prec \varphi_0(z)$.

Corollary 5. ([10]) Let the function p be analytic in D, p(0) = 1 and $1 + \beta z p'(z)/p(z) \prec \sqrt{1+cz}$. Then the following subordination results hold:

If
$$\beta \ge \frac{2(\ln 2 - 1)}{\ln(2\sqrt{2} - 2)} \approx 3.26047$$
, then $p(z) \prec \varphi_0(z)$.

Corollary 6. ([10]) Let the function p be analytic in D, p(0) = 1 and $1 + \beta z p'(z)/p^2(z) \prec \sqrt{1+cz}$. Then the following subordination results hold:

If
$$\beta \ge 4(1+\sqrt{2})(1-\ln 2) \approx 2.96323$$
, then $p(z) \prec \varphi_0(z)$.

Acknowledgements

We thank to UMSGreat Grant, GUG0269-2/2018 for financial support and all the anonymous papers as references.

References

[1] G.M. Goluzin, On the majorization principle in function theory, *Dokl. Akad. Nauk. SSSR*, **42** (1935), 647-650.

- [2] S.S. Miller, P.T. Mocanu, On some classes of first-order differential subordinations, *Michigan Math. J.*, **32**, No 2 (1985), 185-195.
- [3] M. Nunokawa, M. Obradović, S. Owa, On criterion for univalency, Proc. Amer. Math. Soc., 106, No 4 (1989), 1035-1037.
- [4] R.M. Ali, V. Ravichandran, N. Seenivasagan, Sufficient conditions for Janowski starlikeness, *Int. J. Math. Math. Sci.*, 2007 (2007), Art. ID 62927, 7 pp.
- [5] R. Omar, S.A. Halim, Differential subordinations properties of Sokól-Stankiewicz starlike functions, Kyungpook Math. J. 53, No 3 (2013), 459-465.
- [6] R. Omar, S.A. Halim, R.W. Ibrahim, Differential subordination properties of certain analytic functions, *Int. J. of Math.*, **21**, No 6 (2013), 7 pp.
- [7] N.E. Cho, H.J. Lee, J. H. Park, R. Srivastava, Some application of the first-order differential subordinations, *Filomat*, **30**, No 6 (2016), 1465-1474.
- [8] V. Ravichandran, K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc., 52, No 4 (2015), 727-749.
- [9] K. Sharma, V. Ravichandran, Applications of subordination theory to star-like functions, *Bull. Iranian Math. Soc.*, **42**, No 3 (2016), 761-777.
- [10] P. Ahuja, S. Kumar, V. Ravichandran, Application of first order differential subordination for functions with positive real part, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 303-311.
- [11] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., No 19 (1996), 101-105.
- [12] M.K. Aouf, J. Dziok, J. Sokół, On a subclass of strongly starlike functions, *Appl. Math. Lett.*, **24** (2011), 27-32.
- [13] S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, *Southcast Asian Bull. Math.*, **40**, No 2 (2016), 199-212.
- [14] S.S. Miller, P.T. Mocanu, *Differential Subordination*, Dekker, New York (2000).