New Quasi-Newton methods for unconstrained optimization are proposed which are invariant to a nonlinear scaling of a strictly convex quadratic function. In specific, we examine a logarithmic scaling of some quadratic function and proceed to derive the necessary parameters for obtaining invariancy to such nonlinear scalings. The techniques considered in this work have the same convergence properties as the classical BFGS-method, when applied to a quadratic function.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] M. Al-Baali, New property and global convergence of the Fletcher-Reeves
method with inexact line searches, IMA J. Numer. Anal., 5 (1985), 122-
124.
[2] W.R. Boland, E.R. Kamgnie, J.S. Kowalik, A conjugate gradiant optimization method invariant to nonlinear scaling, JOTA, 27 (1979), 11-19.
[3] N. Anderi, A scaled BFGS preconditioned conjugate gradient algorithm
for unconstrained optimization, Applied Mathematics Letters, 20 (2007),
645-650.
[4] C.G. Broyden, The convergence of a class of double-rank minimization
algorithms - Part 2: The new algorithm, J. Inst. Math. Applic., 6 (1970),
222-231.
[5] R.H. Byrd, R.B. Schnabel, G.A. Shultz, Parallel quasi-Newton methods
for unconstrained optimization, Math. Programing, 42 (1988), 273-306.
[6] Y.H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong
global convergence property, SIAM J. Optim., 10 (1999), 177-182.
[7] J.E. Dennis, R.B. Schnabel, Least change secant updates for quasi-Newton
methods, SIAM Review, 21 (1979), 443-459.
[8] R. Fletcher, Practical Methods of Optimization (Second Edition), Wiley,
New York (1987).
[9] R. Fletcher, A new approach to variable metric algorithms, Comput. J.,
13 (1970), 317-322.
[16] I.A.R. Moghrabi, New two-step conjugate gradient method for unconstrained optimization, International Journal of Applied Mathematics, 33,
No 5 (2020), 853-866; doi: 10.12732/ijam.v33i5.8.
[22] E. A Spedicato, Variable metric method for function minimization derived
from invariancy to nonlinear scaling, JOTA, 20 (1976), 30-42.
[23] A. Tassopoulos, C.A. Story, Conjugate direction method based on a nonquadratic model, JOTA, 43 (1984), 1-9.
[24] P. Wolfe, Convergence conditions for ascent methods II: Some corrections,
SIAM Rev., 13 (1971), 185-188.
[25] L. Wong, M. Cao, F. Xing, The new spectral conjugate gradient method
for large-scale unconstrained optimisation, J. Inequal Appl., 111 (2020),
28-37.