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Abstract: The problem of one-dimensional non-stationary wave propagation
in viscoelastic half space is studied. For the description of the hereditary prop-
erties of the viscoelastic medium, several examples of completely monotone
relaxation kernels are considered. They are expressed in terms of functions of
Mittag-Leffler type, including the recently introduced multinomial Prabhakar
type function. Applying Laplace transform in time, some characteristics of
the propagation function are discussed, such as non-negativity, monotonicity,
propagation speed, presence/absence of wave front, and explicit integral repre-
sentation of the solution is derived.

AMS Subject Classification: 33E12, 74D05, 74J05
Key Words: wave propagation; linear viscoelasticity; completely monotone
function; multinomial Mittag-Leffler function; Laplace transform

1. Introduction

Analytical methods play an important role in the study of non-stationary wave
processes in linear viscoelastic media [2, 18]. To describe the hereditary prop-
erties of a viscoelastic medium, the stress and strain are related via a Volterra
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integral operator with a specific kernel, or, alternatively, via fractional calculus
operators. For a comparative analysis we refer to [18, 27]. A historical survey of
the early contributions to this topic can be found in [19]. As a generalization of
the exponential relaxation kernel, characteristic for the Standard Linear Solid
model, in his pioneering paper [24] Rabotnov proposed the so-called fractional
exponential function. In fact, the Rabotnov function is a particular case of a
completely monotone Mittag-Leffler type function.

In the present work we discuss further generalizations for the relaxation
kernel, expressed in terms of functions of Mittag-Leffler type, including the
recently introduced binomial Prabhakar function [8, 6]. In particular cases
we recover some known relaxation models, such as the fractional Zener model
[18, 20], the distributed order fractional Zener model in the case of discrete
distribution [1, 2], and the Havriliak-Negami relaxation model [9, 13]. The
proposed in this work new relaxation kernel, which is expressed in terms of a
completely monotone binomial Prabhakar type function, generalizes the above
mentioned models.

The present study is a continuation of works [16, 17], where one-dimensional
problems for wave propagation in viscoelastic solids are considered in the case
when hereditary properties are characterized by two-parameter exponential re-
laxation kernel. We consider the problem of one-dimensional non-stationary
wave propagation in viscoelastic half space, when initial conditions are set to
zero and displacement is determined on the half space boundary. The solution
of this problem is essential, as it allows obtaining solutions of more general, pos-
sibly multidimensional dynamic problems of linear viscoelasticity, by applying
the subordination principle [22], Chapter 4. For the study of the problem and
determination of the propagation and the Green functions Laplace transform in
time is used. Explicit integral representation of the solution is derived. Some
of the characteristics of the propagation function are discussed, such as non-
negativity, monotonicity, propagation speed, presence/absence of wave front.

The rest of the paper is organized as follows. Section 2 contains definitions
and basic properties of the classical Mittag-Leffler type functions and their
binomial versions. In Section 3 we set assumptions on the memory function,
which ensure thermodynamic acceptability of the considered viscoelastic model.
In Section 4 we discuss four specific examples of memory kernels of Mittag-
Leffler type, satisfying the thermodynamic acceptability assumptions. Section 5
is devoted to the properties of the propagation function and deriving an explicit
integral representation of the solution.
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2. Preliminaries

The Mittag-Leffler function is defined by the series [11]

Eα,β(z) =

∞∑

k=0

zk

Γ(β + αk)
, z ∈ C, α, β ∈ R, α > 0, (1)

where Γ(·) is the Gamma function. If β = 1 the short notation Eα = Eα,1 is
usually used. The Mittag-Leffler function (1) is a generalization of the expo-
nential function ez, which is recovered for α = β = 1.

The Prabhakar (or three-parameter Mittag-Leffler) function is defined as
follows [11, 23]

Eδ
α,β(z) =

∞∑

k=0

(δ)k
k!

zk

Γ(β + αk)
, z ∈ C, α, β, δ ∈ R, α > 0, (2)

where (δ)k denotes the Pochhammer symbol

(δ)k =
Γ(δ + k)

Γ(δ)
= δ(δ + 1) . . . (δ + k − 1), k ∈ N; (δ)0 = 1.

The identity (1)k = k! implies that for δ = 1 the Prabhakar function (2) reduces
to the Mittag-Leffler function (1), i.e. Eα,β = E1

α,β.
The following binomial Mittag-Leffler function of Prabhakar type has been

recently introduced in [8]:

Eδ
(α1,α2), β

(z1, z2) =

∞∑

k=0

∞∑

l=0

(δ)k+l

k!l!

zk1z
l
2

Γ (β + α1k + α2l)
, (3)

where z1, z2 ∈ C, α1, α2, β, δ ∈ R, α1 > 0, α2 > 0. It satisfies the commutativity
identity

Eδ
(α1,α2), β

(z1, z2) = Eδ
(α2,α1), β

(z2, z1).

If one of the variables vanishes, function (3) reduces to the Prabhakar function
of one variable (2), i.e. Eδ

(α1,α2), β
(z1, 0) = Eδ

α1,β
(z1).

The multinomial version of function (3) is studied in [6]. For other types
of multi-index and multi-variable generalizations of the classical Mittag-Leffler
function we refer to the recent surveys [14, 15, 21] and the last edition of the
monograph [11].

Let us denote the Laplace transform of a function f(t) by f̂ or L{f}, that
is
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f̂(s) = L{f(t)}(s) =
∫ ∞

0
e−stf(t) dt.

Of particular interest are the Prabhakar-type function

Eδ
α,β(t) = tβ−1Eδ

α,β(−λtα) (4)

and its binomial generalization

Eδ
(α1,α2), β

(t) = tβ−1Eδ
(α1,α2), β

(−λ1t
α1 ,−λ2t

α2), (5)

where λ, λ1, λ2 ∈ R, t > 0. The series representation of the function Eδ
(α1,α2), β

(t)

follows from (3):

Eδ
(α1,α2), β

(t) =

∞∑

k=0

∞∑

l=0

(−1)k+l(δ)k+l

k!l!

λk
1λ

l
2t

β−1+α1k+α2l

Γ (β + α1k + α2l)
. (6)

The Laplace transform pair L
{

tβ−1

Γ(β)

}
= s−β, β > 0, yields the following

identities for β > 0 (for the first see e.g. [11], for the second see [6, 8])

L
{
Eδ
α,β(t)

}
(s) =

s−β

(1 + λs−α)δ
(7)

and

L
{
Eδ
(α1,α2), β

(t)
}
(s) =

s−β

(1 + λ1s−α1 + λ2s−α2)δ
. (8)

The Prabhakar type function Eδ
α,β(t) admits an asymptotic expansion for

t → 0 given by the first terms in the power series (2). For large t it holds [10]

Eδ
α,β(t) ∼





λ−δ tβ−αδ−1

Γ(β − αδ)
, αδ 6= β,

−δλ−δ−1 t
−α−1

Γ(−α)
, αδ = β,

t → +∞. (9)

Regarding the binomial Prabhakar type function (5) with α1 > α2, the first
terms in the power series (6) give the following asymptotic expansion for small
t:

Eδ
(α1,α2), β

(t) ∼ tβ−1

Γ(β)
− δλ2

tβ+α2−1

Γ(β + α2)
, t → 0. (10)
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The leading terms in the asymptotic expansion for large t are derived in [6] as
follows:

Eδ
(α1,α2), β

(t) ∼





λ−δ
1

tβ−α1δ−1

Γ(β − α1δ)
, α1δ 6= β,

−δλ−δ−1
1 λ2

t−α1+α2−1

Γ(−α1 + α2)
, α1δ = β,

t → +∞. (11)

In this work we will need also the following integration rule [8, 6]

∫ t

0
Eδ
(α1,α2), β

(τ) dτ = Eδ
(α1,α2), β+1(t), t > 0, (12)

which can be established directly from the series definition (5), or by applying
Laplace transform and using (8). Identity (12) generalizes a property for the
standard Prabhakar function, which can be derived from (12) replacing (α1, α2)
with α.

An essential feature of the functions of Mittag-Leffler type is related to the
property of complete monotonicity. A function f : (0,∞) → R is said to be
completely monotone function (CMF) if it is of class C∞ and

(−1)nf (n)(t) ≥ 0, t > 0, n = 0, 1, 2, ... (13)

The characterization of the class CMF is given by the Bernstein’s theorem:
a function is completely monotone if and only if it can be represented as the
Laplace transform of a non-negative (generalized) function. The class CMF is
closed under pointwise addition, multiplication and convergence [28, 22].

Let λ > 0. The Prabhakar type function Eδ
α,β(t) given in (4) is completely

monotone if the parameters satisfy the conditions [10]

0 < α ≤ 1, 0 < αδ ≤ β ≤ 1. (14)

In particular, the function of Mittag-Leffler type Eα,β(t) ∈ CMF provided
0 < α ≤ β ≤ 1.

Let λ1, λ2 > 0. It is proven in [6] that the binomial Prabhakar type function
Eδ
(α1,α2), β

(t) given in (5) is completely monotone provided

0 < αj ≤ 1, 0 < αjδ ≤ β ≤ 1, j = 1, 2. (15)
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3. Admissible memory functions

The following one-dimensional problem, governing wave propagation in vis-
coelastic half-space, is considered in [16]

ü = u′′ −m ∗ u′′, x, t > 0, (16)

u|x=0 = u0(t), |u| < ∞ as x → ∞, t > 0, (17)

u|t=0 = u̇|t=0 = 0, x > 0, (18)

where u = u(x, t) is displacement, x and t are dimensionless spatial and tem-
poral variables, primes and dots correspond to the dimensionless space and
time derivatives, respectively, m = m(t) is a given memory function, which will
be specified later, and ∗ denotes the Laplace convolution with respect to the
variable t:

(f ∗ g)(t) =
∫ t

0
f(t− τ)g(τ) dτ.

Problem (16)-(18) is conveniently treated using Laplace transform. Let us
denote by û(x, s) the Laplace transform of the function u(x, t) with respect
to t, i.e.

û(x, s) =

∫ ∞

0
e−stu(x, t) dt.

By applying Laplace transform to equation (16) and taking into account the
boundary conditions (17) and initial conditions (18), the following ODE for
û(x, s) is obtained

s2(1− m̂(s))−1û(x, s) = û′′(x, s), û(0, s) = û0(s), (19)

where û(x, s) is bounded for x → ∞. Solving problem (19) with s considered
as a parameter, it follows

û(x, s) = û0(s)e
−µ(s)x, (20)

where

µ(s) = s(1− m̂(s))−1/2. (21)

In [16] an exponential memory kernel is considered: m(t) = Ce−λt. Our
aim in this work is to expand the class of memory functions m(t) in a physically
acceptable way, by involving functions of Mittag-Leffler type. To this end we
use the representation of the wave equation in terms of the so-called relaxation
modulus G(t), which is a characteristic function for a viscoelastic medium. The
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second law of thermodynamics, stating that the total entropy can only increase
over time for an isolated system, implies that G(t) should be a non-negative and
non-increasing function for t > 0. In this work a solid-like viscoelastic medium
is considered, i.e. the creep is supposed finite as t → ∞, which corresponds to
the assumption G(+∞) > 0, i.e. G(t) > 0 for all t ≥ 0. For more details on
the theory of linear viscoelasticity we refer to [18, 20].

The equation for wave propagation in linear viscoelastic media is written in
the following form

u̇ = G ∗ u′′, x, t > 0, (22)

where, as above, primes and dots correspond to the dimensionless space and
time derivatives, respectively, and G(t) is the relaxation modulus. Integration
of both sides of equation (16), by taking into account the initial conditions (18),
leads to an equation of the form (22), where

G(t) = 1−
∫ t

0
m(τ) dτ, t ≥ 0. (23)

The obtained relation (23) between the relaxation modulus G(t) and the mem-
ory function m(t) can be also written in a differentiated form as

m(t) = −dG

dt
, t ≥ 0. (24)

This means that the function m(t) is a measure of the rate of relaxation. Based
on the properties of the relaxation modulus G(t) we derive next restrictions on
the memory function m(t).

First, since G(t) should be a non-increasing function for t > 0, from (24)
we deduce that m(t) ≥ 0 for any t ≥ 0. Next, the relation (23) between the
functions G(t) and m(t) implies that the property G(t) > 0 is equivalent to
1 −

∫ t
0 m(τ) dτ > 0 for any t ≥ 0, which is ensured by assuming that m(t) is

integrable on (0,∞) and ∫ ∞

0
m(t) dt < 1. (25)

Assumption (25) can also be written as m̂(0) < 1.
An important class of thermodynamically admissible relaxation moduli is

the class of completely monotone relaxation functions G(t), c.f. [13, 18]. Rela-
tion (24) implies that in this case the function m(t) should also be completely
monotone.

In the rest of this work we make the following assumptions on the memory
function:
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(A) m(t) ∈ CMF , m(t) ∈ L1(0,∞) and (25) is satisfied.

Let us briefly discuss some implications of assumptions (A).
Let s ∈ R, s ≥ 0. We note that since m(t) ≥ 0, then m̂(s) ∈ CMF , in par-

ticular, m̂(s) is a nonnegative and nonincreasing function in s ≥ 0. Therefore,
(25) implies that m̂(s) ≤ m̂(0) < 1 for any s ≥ 0. Moreover, according to [12],
Theorem 2.6, the complete monotonicity of m(t) implies that

lim
s→+∞

m̂(s) = 0 (26)

and that the function m̂(s) admits an analytic extension to the whole complex
plane cut along the negative real axis.

Assumptions (A) imply for the relaxation modulus G(t) that it is a locally
integrable function, such that G(t) ∈ CMF . Indeed, (23) implies that G(t) is
a continuous function and G(0) = 1, therefore, it is locally integrable. Since
m(t) ∈ CMF then (24) implies that the derivatives of G(t) of all orders satisfy
the inequalities (13). To establish complete monotonicity of G(t) it remains to
check that G(t) ≥ 0 for all t ≥ 0. Since Ġ(t) ≤ 0, the function G(t) is non-
increasing. Moreover, (23) together with inequality (25) implies G(+∞) > 0.
Therefore, G(t) > 0 for all t ≥ 0. In this way, we established that assump-
tions (A) imply the complete monotonicity of the relaxation modulus G(t) and
G(+∞) > 0, which corresponds to solid-like viscoelastic behavior.

The relation (23) between the relaxation modulus G(t) and the function
m(t) implies

Ĝ(s) =
1− m̂(s)

s
, (27)

which together with (21) yields

µ(s) =

(
s

Ĝ(s)

)1/2

. (28)

Let us consider briefly the Green function of problem (16)-(18), which cor-
responds to u0(t) = δ(t), the Dirac delta function. The Laplace transform of
the Green function is obtained by setting û0(s) = δ̂(s) = 1 in (20). Since
under assumptions (A) the function G(t) is locally integrable function and
G(t) ∈ CMF , applying the technique of Bernstein functions, it follows (for
details see e.g. [5]) that e−µ(s)x ∈ CMF in the variable s ≥ 0, when x > 0 is
considered as a parameter. Therefore, by the Bernstein’s theorem, the Green
function is nonnegative. This is naturally expected in a physically meaningful
model.
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4. Relaxation of Mittag-Leffler type

In this section we consider several examples of relaxation functions m(t), which
satisfy assumptions (A). They are generalizations of the classical case m(t) =
Ce−λt, 0 < C < λ. In this classical case conditions (A) are easily verified.
Relation (23) yields

G(t) =

(
1− C

λ

)
+

C

λ
e−λt, t ≥ 0,

and we recognize the classical Zener (or Standard Linear Solid) relaxation
model, see e.g. [18, 20].

4.1. Memory kernel of Mittag-Leffler type

Let 0 < α ≤ 1 and consider the following memory kernel in terms of Mittag-
Leffler function

m(t) = Ctα−1Eα,α(−λtα), m̂(s) =
C

sα + λ
, 0 < C < λ. (29)

Kernel (29) reduces to the above exponential kernel for α = 1. The parameters
satisfy conditions (14) with α = β and δ = 1. Therefore, m(t) ∈ CMF .
Asymptotic expansions in the next subsection (35) and (36) with δ = 1 give the
behavior of m(t) and show that it is integrable function on (0,∞). Assumption
0 < C < λ implies m̂(0) < 1. Hence, properties (A) are satisfied. To find
the relaxation modulus G(t) we can use identity (23), which together with (12)
implies

G(t) = 1− CtαEα,α+1(−λtα). (30)

For an alternative representation, let us find the Laplace transforms of the
relaxation modulus G(t) by applying relation (27). Setting

a = λ−1, b = (λ− C)−1, (31)

it follows in the case of kernel (29)

Ĝ(s) =
a

bs

1 + bsα

1 + asα
, a < b, (32)

which suggests that this is the fractional Zener relaxation model, see e.g. [3, 18].
After inversion of the LT in (32) we derive by the use of identity (7) with β = 1
and δ = 1 the following, alternative to (30), representation

G(t) =

(
1− C

λ

)
+

C

λ
Eα(−λtα). (33)
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We see from (33) that G(t) ∈ CMF . Moreover, taking into account the asymp-
totic expansion (9) of the Mittag-Leffler functions appearing in (30) or (33) it
follows G(+∞) = 1− C/λ > 0.

4.2. Memory kernel of Prabhakar type

Let 0 < α ≤ 1 and 0 < δ ≤ 1. As a further generalization, consider the
Prabhakar type memory kernel

m(t) = Ctαδ−1Eδ
α,αδ(−λtα), m̂(s) =

C

(sα + λ)δ
, 0 < C < λδ, (34)

which for δ = 1 reduces to (29). The asymptotic behaviors of the memory
function (34) for short and long times are derived by the use of (2) and (9):

m(t) ∼ C
tαδ−1

Γ(αδ)
, t → 0, (35)

m(t) ∼ −Cδλ−δ−1 t
−α−1

Γ(−α)
, t → +∞. (36)

Therefore, m(t) is integrable function on (0,∞). The parameters in (34) satisfy
conditions (14) for complete monotonicity and m̂(0) < 1. Hence, m(t) satisfies
properties (A). Applying identity (27) we obtain for the relaxation modulus
G(t) in the case of kernel (34)

Ĝ(s) =
1

s

(
1− C

(sα + λ)δ

)
=

1

s

(
1− d

(asα + 1)δ

)
, (37)

where a = λ−1 and d = C/λδ < 1. Therefore, we recognize from (37) the
relaxation modulus of the Havriliak-Negami relaxation model, see e.g. [13, 9].
Relation (23) and the integration rule (12) imply

G(t) = 1− CtαδEδ
α,αδ+1(−λtα). (38)

The asymptotic expansion (9) then implies G(+∞) = 1−C/λδ > 0.
In the particular case α = 1 the Prabhakar kernel (34) reduces to the

tempered power-law memory kernel

m(t) = C
tδ−1

Γ(δ)
e−λt, m̂(s) =

C

(s+ λ)δ
, 0 < C < λδ. (39)

Therefore, the model with memory function (39) appears to be a particular
case of the Havriliak-Negami relaxation model. Plugging α = 1 in (38) yields
the following completely monotone relaxation modulus in the case of memory
kernel (39):

G(t) = 1− CtδEδ
1,δ+1(−λt).
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4.3. Memory kernel of binomial Mittag-Leffler type

Let 0 < α0 < α ≤ 1, λ > 0, λ0 > 0, and consider the binomial Mittag-Leffler
memory function

m(t) = Ctα−1E(α,α0),α(−λtα,−λ0t
α0), 0 < C < λ. (40)

Let us note that for λ0 = 0 kernel (40) reduces to (29). The parameters satisfy
conditions (15), therefore m(t) ∈ CMF . Asymptotic expansions (43) and (44)
with δ = 1 give the behavior of kernel (40) and show that it is integrable
function on (0,∞). Laplace transform pair (8) yields

m̂(s) =
C

sα + λ0sα−α0 + λ
. (41)

Therefore m̂(0) < 1 and properties (A) are fulfilled.
In the case of the binomial Mittag-Leffler memory kernel (40) the relaxation

modulus, obtained inserting (41) in (27) equals

Ĝ(s) =
a

bs

1 + b1s
α−α0 + bsα

1 + a1sα−α0 + asα
,

where the coefficients a, b are defined in (31) and a1 = λ0a, b1 = λ0b. Therefore,
we recognize a multi-term fractional Zener model (distributed-order fractional
Zener model in the case of discrete distribution) which relaxation modulus is
completely monotone, see [1, 7]. Rheological models of this type and related
simple mechanical systems are discussed also in [4, 25, 27].

The explicit form of G(t) derived from (40), (23), and (12), is

G(t) = 1− CtαE(α,α0),α+1(−λtα,−λ0t
α0)

and the asymptotic expansion (11) yields G(+∞) = 1− C/λ > 0.

4.4. Memory kernel of binomial Prabhakar type

Let 0 < α0 < α ≤ 1, 0 < δ ≤ 1, and λ, λ0 > 0. Consider as a last generalization
the binomial memory function of Prabhakar type

m(t) = Ctαδ−1Eδ
(α,α0),αδ

(−λtα,−λ0t
α0), 0 < C < λδ. (42)

Let us note that kernel (42) reduces to (34) if λ0 = 0 and to (40) if δ = 1.
Again, the parameters of the binomial Prabhakar kernel satisfy conditions (15).
Therefore m(t) ∈ CMF .
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For completeness, we give next the asymptotic behavior of the memory
functions (42), derived by the use of (10) and (11):

m(t) ∼ C
tαδ−1

Γ(αδ)
, t → 0, (43)

m(t) ∼ −Cδλ−δ−1λ0
t−α+α0−1

Γ(−α+ α0)
, t → +∞. (44)

Therefore, m(t) is integrable function on (0,∞).

Laplace transform pair (8) yields for the kernel (42)

m̂(s) =
C

(sα + λ0sα−α0 + λ)δ
,

which implies m̂(0) < 1. Therefore, properties (A) are satisfied for the kernel
(42).

The corresponding relaxation modulus G(t), derived from (42), (23), and
(12), is

G(t) = 1− CtαδEδ
(α,α0),αδ+1 (−λtα,−λ0t

α0) . (45)

The function G(t) is completely monotone, which follows from the fact that
m(t) satisfies properties (A). The asymptotic expansions of G(t) for t → 0 and
t → +∞ are obtained from (45) by applying (10) and (11), respectively:

G(t) ∼ 1− C
tαδ

Γ(αδ + 1)
+ Cδλ0

tαδ+α0

Γ(αδ + α0 + 1)
, t → 0,

G(t) ∼ 1− C

λδ
+ Cδλ−δ−1λ0

t−α+α0−1

Γ(−α+ α0)
, t → +∞.

In particular, G(0) = 1, G(+∞) = 1−C/λδ, i.e. the function G(t) is monoton-
ically decreasing in (0,+∞) from G(0) = 1 to G(+∞) ∈ (0, 1).

The Laplace transform of the relaxation modulus in the case of the binomial
Prabhakar memory kernel (42) can be obtained taking into account (27) as
follows

Ĝ(s) =
1

s

(
1− d

(asα + a1sα−α0 + 1)δ

)
,

where a = λ−1, a1 = λ0λ
−1, and d = C/λδ < 1. Therefore, this model is a

generalization of the Havriliak-Negami relaxation model, to which it reduces
when λ0 = 0 (a1 = 0), as well as a further generalization of the Zener model
considered in the previous Subsection 4.3.
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It is worth noting that in Subsections 4.3 and 4.4 the multinomial variants of
Mittag-Leffler and Prabhakar type functions can be considered by an analogous
argument and applying complete monotonicity results established in [6].

5. Propagation function

The solution of problem (16)-(18) with boundary condition u0(t) = H(t), where
H(t) is the Heaviside unit step function, is referred to as propagation function.
Let us denote the propagation function by w(x, t). Then from (20), and taking
into account that Ĥ(s) = 1/s, it follows

ŵ(x, s) =
1

s
e−xµ(s). (46)

Let us first discuss the behavior of the propagation function, based on its
Laplace transform (46) for s ∈ R, s ≥ 0. As mentioned before, e−xµ(s) ∈ CMF
in s ≥ 0 (x > 0 is considered as a parameter). Since 1/s ∈ CMF , then
ŵ(x, s) ∈ CMF as a function of s, being a product of two completely mono-
tone functions. Then Bernstein’s theorem implies w(x, t) ≥ 0. Taking into
account the initial condition w(x, 0) = 0, (46) implies

L{ẇ}(x, s) = sŵ(x, s)− w(x, 0) = e−xµ(s). (47)

Therefore, L{ẇ}(x, s) ∈ CMF in s ≥ 0 and Bernstein’s theorem implies
ẇ(x, t) ≥ 0, thus, the function w(x, t) is nondecreasing in t. To derive the
limit for large times we can apply the final value theorems for the Laplace
transform. The Laplace transform ŵ(x, s) has no poles in the complex plane
except a single pole at s = 0. Therefore,

lim
t→+∞

w(x, t) = lim
s→0

sŵ(x, s) = lim
s→0

e−xµ(s) = 1.

Here we have used that µ(0) = 0, following from (21) and m̂(0) < 1.
Characteristic for the behavior of the solution is the propagation speed of

a disturbance ([18, Chapter 4], [22, Chapter 5])

c = lim
s→+∞

s

µ(s)
. (48)

In the case of finite propagation speed c, a jump discontinuity at the planar
surface x = ct exists if [22, Section 5.4]

ω = lim
s→+∞

(µ(s)− s/c) < ∞. (49)
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Let us calculate the quantities c and ω for the considered models. According
to assumptions (A), m̂(s) → 0 as s → +∞, see (26). Therefore, inserting (21)
in (48) and (49) implies

c = 1; ω = lim
s→+∞

s
(
(1− m̂(s))−1/2 − 1

)
= lim

s→+∞

sm̂(s)

2
, (50)

where for the derivation of ω the asymptotic expansion (1 + z)b ≈ 1 + bz for
|z| < 1 is used. By the initial value theorem for the Laplace transform, (50)
implies ω = m(0)/2.

Therefore, in all models with memory function satisfying conditions (A) the
propagation speed of a disturbance is c = 1. This implies that the propagation
function w(x, t) vanishes for t < x.

Let us further discuss the behavior of w(x, t) at the wave front x = t, which
depends on the value of m(0). The propagation function in the classical case
m(t) = Ce−λt, 0 < C < λ, studied in [16], exhibits a jump discontinuity at
x = t, since m(0) = C is finite. The memory functions considered in the
previous section provide as well examples, in which the wave front at x = t is
smooth. Such are the models (29) and (40) with α < 1 and models (34) and (42)
with αδ < 1. For all these models m(0) is infinite. On the other hand, model
(40) with α = 1 and α0 < 1 provides an example of a memory kernel, different
from the exponential, for which the propagation function w(x, t) admits a jump
discontinuity at x = t. Indeed, in this case (40) with α = 1 implies m(0) =
C < ∞.

Next we find an explicit integral expression for the propagation function
by inverting the Laplace transform in (46). Applying the Bromwich integral
inversion formula to (46) yields:

w(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
estŵ(x, s) ds =

1

2πi

∫ γ+i∞

γ−i∞
est−xµ(s) ds

s
, γ > 0.

In what follows, for multivalued functions in C such as sα we consider always
the principal branch. Due to the assumptions (A), we established that the
relaxation modulus G(t) is locally integrable and completely monotone. Then,
representation (28) implies that µ(s) is a complete Bernstein function (for the
proof we refer to [5], definition of this class and further details can be found
in [28]). Therefore, µ(s) admits an analytic extension to C\(−∞, 0], such that
| arg µ(s)| ≤ | arg s| and µ(s∗) = (µ(s))∗, where ∗ denotes the complex conju-
gate. Applying the Cauchy’s theorem, the integration on the Bromwich path
(γ − i∞, γ + i∞) can be replaced by integration on the contour D ∪D0, where

D = {s = ir, r ∈ (−∞,−ε) ∪ (ε,∞)},
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D0 = {s = εeiθ, θ ∈ [−π/2, π/2]}.

Indeed, the integrals on the arcs D−
R and D+

R , where

D±
R = {|s| = R, ℜs ∈ [0, γ], ±ℑs > 0},

vanish for R → ∞. This follows from the fact that ℜµ(s) ≥ 0 for ℜs ≥ 0 and
therefore

∣∣∣∣
1

s
exp (−xµ(s))

∣∣∣∣ ≤
1

R
exp (−xℜµ(s))) ≤ 1

R
, s ∈ D±

R . (51)

The integral on the semi-circular contour D0 equals 1/2 when ε → 0. This
can be obtained by direct check using that

lim
s→0

s

(
1

s
exp (st− xµ(s))

)
= 1.

Integration on the contour D yields after letting ε → 0

1

2πi

∫

D

1

s
exp (st− xµ(s)) ds =

1

π

∫ ∞

0

1

r
ℑ exp (irt− xµ(ir)) dr.

Applying the formula for real and imaginary parts of the square root of a
complex number we obtain the following result for x, t > 0

w(x, t) =
1

2
+

1

π

∫ ∞

0
exp(−xK+(r)) sin(rt− xK−(r))

dr

r
, (52)

where

K±(r) =
r√
2

((
A2(r) +B2(r)

)1/2 ∓A(r)
)1/2

(53)

with
A(r) = ℜ

{
(1− m̂(ir))−1

}
, B(r) = ℑ

{
(1− m̂(ir))−1

}
.

For the Green function G(x, t) it holds Ĝ(x, s) = e−xµ(s). Taking into ac-
count (47), it follows by the uniqueness of the Laplace transform that G(x, t) =
ẇ(x, t) and the following integral representation for the Green function is ob-
tained by time differentiation under the integral sign in (52)

G(x, t) = 1

π

∫ ∞

0
exp(−xK+(r)) cos(rt− xK−(r)) dr, x, t > 0,

where the functions K±(r) are defined in (53).
The derived integral representations for the solutions can be further used

for numerical computation and visualization.
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