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Abstract: In the present study, a two-dimensional difference neutron trans-
port operator is considered. The resolvent equation for this neutron transport
operator is constructed. The positivity of this difference neutron transport op-

erator in L1

(

R
2
(r,h)

)

is provided. The structure of fractional spaces generated

by the two-dimensional difference neutron transport operator is studied. It is es-

tablished that the norms in the spaces Eα,1

(

L1

(

R
2
(r,h)

)

, Ar,h

)

andWα
1

(

R
2
(r,h)

)

are equivalent. This result enabled us to prove the positivity of the difference
neutron transport operator in the Slobodeckij space. In practice, the theorem
on the stability of the Cauchy problem for the difference neutron transport
equation in Banach spaces is presented.
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1. Introduction

The neutron transport theory is one of the most important fields of reactor
theory.
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The neutron transport equation is used in many applications of nuclear
physics such as the kinetic theory of gases, neutron transport, radiative transfer,
etc. The neutron transport equation describes the distribution of neutrons
produced in and out of a specific region in terms of their positions in space
and time, their energies, and their travel directions. (see, [1], [2], [3], [4], and
the references therein). Neutron transport theory has powerful connections to
functional analysis, semigroups theory, spectral theory, and positive operators.
Several researchers have studied the positivity property of the differential and
difference operators in Banach spaces (see, [5], [7], [8], [9], [15], [20], [21], [22],
[23], and the references therein).

Many researchers have investigated the structure of fractional spaces gen-
erated by differential and difference operators and their applications (see, [10],
[11], [12], [13], [14], [15], [16], [17], and the references therein). Eventually, some
important results in fractional spaces generated by positive operators and their
applications to partial differential equations are given in [18].

In this paper, the structure of fractional spaces generated by the two-
dimensional difference neutron transport operator Ar,h is investigated. It is es-

tablished that for any 0 < α < 1 the norms in the spaces Eα,1

(

L1

(

R
2
(r,h)

)

, Ar,h

)

and Wα
1

(

R
2
(r,h)

)

are equivalent. This result permits us to prove the positivity

of the difference neutron transport operator in Slobodeckij space Wα
1

(

R
2
(r,h)

)

.

In applications, new theorems on the stability of Cauchy problem for the differ-
ence neutron transport equation in Banach spaces are presented. Finally, some
of these statements were formulated in [19] without proof.

2. Preliminaries

An operator A densely defined in a Banach space E with the domain D(A) is
called positive in E, if its spectrum σA lies in the interior of the sector of angle ϕ,
0 < ϕ < π, symmetric with respect to the real axis, and moreover on the edges
of this sector S1 (ϕ) = {ρeiϕ : 0 ≤ ρ ≤ ∞ } and S2 (ϕ) = {ρe−iϕ : 0 ≤ ρ ≤ ∞},
and outside of the sector the resolvent (λI −A)−1 is subject to the bound [5]

∥

∥(A− λI)−1
∥

∥

E→E
≤ M

1 + |λ| .

Here, I is the identity operator and λ ∈ C is a regular value of the operator A.
Throughout the present paper, M denotes positive constants, which may differ
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in time, and thus, is not a subject of precision. However, we will use M(α, β,
...) to stress the fact that the constant depends only on α, β, ... .

The infimum of all such angles ϕ is called the spectral angle of the positive
operator A and is denoted by ϕ(A) = ϕ(A,E). The operator A is said to be
strongly positive in a Banach space E, if ϕ(A,E) < π

2 .

3. The Difference Neutron Transport Operator

We first introduce the resolvent equation for the two-dimensional difference
neutron transport operator Ar,h acting on the space of grid functions ur,h,

λun−1
m−1 −Ar,hu

r,h = f (xn−1, ym−1, ω) , (xn, ym) ∈ R
2
(r,h). (1)

Here, R2
(r,h) = {(xn, ym)|xn = nr, ym = mh,n,m = 0,±1,±2, ...} is the grid

space, the numbers r and h are the steps of the grid spaces, and Ar,h is defined
by the formula

Ar,hu
r,h =

{

ω1
unm − un−1

m

r
+ ω2

un−1
m − un−1

m−1

h

}

n,m=0,±1,±2,...

. (2)

For the solution of (1) the following formula holds

(λI −Ar,h)
−1 f (xn, ym, ω)

= ∆s√
ω2
1+ω2

2

∞
∑

i=1
Rif

(

xn + ω1si−1√
ω2
1+ω2

2

, ym + ω2si−1√
ω2
1+ω2

2

, ω

)

,

(3)

where the constant coefficients ω1 and ω2 are directional cosines of neutrons
with respect to the x and y axes, ω = (ω1, ω2) ,

cosϕ = ω1√
ω2
1+ω2

2

, sinϕ = ω2√
ω2
1+ω2

2

, xi = si cosϕ+ x0,

yi = si sinϕ+ y0, R =

(

1 + λ∆s√
ω2
1+ω2

2

)−1

, xi − xi−1 =
ω1∆s√
ω2
1+ω2

2

= r,

yi − yi−1 =
ω2∆s√
ω2
1+ω2

2

= h, ∆s = si − si−1, −∞ < si < ∞,

1 ≤ i < ∞, xn = nr, ym = mh, −∞ < n,m < ∞.
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Let us denote Br,h = −Ar,h. Then, using formula (3), we obtain

unm = (λI +Br,h)
−1 f (xn, ym, ω)

= ∆s√
ω2
1+ω2

2

∞
∑

i=1
Rif

(

xn + ω1si−1√
ω2
1+ω2

2

, ym + ω2si−1√
ω2
1+ω2

2

, ω

)

,

(4)

where n,m = 0,±1,±2, ... . For any λ > 0, we have the equality

Br,h (λI +Br,h)
−1 f (xn, ym, ω)

= λ
[

1
λ
− (λI +Br,h)

−1
]

f (xn, ym, ω) .

(5)

Applying formulas (4) and (5), we get

λαBr,h (λI +Br,h)
−1 f (xn, ym, ω) = λ1+α√

ω2
1+ω2

2

×
∞
∑

i=1
sαi−1R

i∆s

[

f(xn,ym,ω)−f

(

xn+
ω1si−1√
ω2
1
+ω2

2

,ym+
ω2si−1√
ω2
1
+ω2

2

,ω

)]

sαi−1
,

(6)

where sαi−1 =





√

(

ω1si−1√
ω2
1+ω2

2

)2

+

(

ω2si−1√
ω2
1+ω2

2

)2




α

.

4. Positivity of the Difference Neutron Transport Operator Br,h in

L1

(

R2
(r,h)

)

The space L1

(

R
2
(r,h)

)

is the space of all bounded grid functions, f r,h =

{f (xn, ym, ω)}n,m=0, ±1, ±2,... defined on R
2
(r,h) for which the following norm

is finite:
∥

∥

∥f r,h
∥

∥

∥

L1

(

R2
(r,h)

) =
∑

(xn,ym)∈R2
(gr,h)

|f (xn, ym, ω)| rh. (7)

Theorem 1. For all λ > 0, the resolvent (λI +Br,h)
−1 satisfies the

following estimate:
∥

∥

∥(λI +Br,h)
−1
∥

∥

∥

L1

(

R2
(r,h)

)

→L1

(

R2
(r,h)

) ≤ 1

λ
. (8)
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Proof. Using formula (7) and Minkowski’s inequality, we obtain
∥

∥

∥(λI +Br,h)
−1 f r,h

∥

∥

∥

L1

(

R2
(r,h)

) ≤ ∆s√
ω2
1+ω2

2

∞
∑

i=2
|R|i

× ∑

(xn,ym)∈R2
(r,h)

∣

∣

∣

∣

f

(

xn + ω1si−1√
ω2
1+ω2

2

, ym + ω2si−1√
ω2
1+ω2

2

, ω

)∣

∣

∣

∣

rh.

(9)

Making the change of variables xn = xn + ω1si−1√
ω2
1+ω2

2

and

ym = ym + ω2si−1√
ω2
1+ω2

2

, we have

∥

∥

∥(λI +Br,h)
−1 f r,h

∥

∥

∥

L1

(

R2
(r,h)

) ≤ 1

λ

∥

∥

∥f r,h
∥

∥

∥

L1

(

R2
(r,h)

)

for any λ > 0. This completes the proof of Theorem 1.

In this section, we study the structure of the fractional space

Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

, 0 < α < 1 of all grid functions

f r,h = {f (xn, ym, ω)}n,m=0, ±1, ±2,... defined on R
2
(r,h) for which the following

norm is finite:
∥

∥f r,h
∥

∥

Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

) =
∥

∥f r,h
∥

∥

L1

(

R2
(r,h)

)

+
∞
∫

0

∥

∥

∥
λαBr,h (λI +Br,h)

−1 f r,h
∥

∥

∥

L1

(

R2
(r,h)

)

dλ
λ
.

(10)

Recall that the Sobolev-Slobodeckij space Wα
1

(

R
2
(r,h)

)

, 0 < α < 1, of all grid

functions f r,h defined on R
2
(r,h) for which the following norm is finite:

∥

∥f r,h
∥

∥

Wα
1

(

R2
(r,h)

) =
∥

∥f r,h
∥

∥

L1

(

R2
(r,h)

)

(11)

+
∑

(xn,ym)∈R2
(r,h)

∞
∑

i=2

∣

∣

∣

∣

∣

f(xn,ym,ω)−f

(

xn+
ω1si−1√
ω2
1+ω2

2

,ym+
ω2si−1√
ω2
1+ω2

2

,ω

)
∣

∣

∣

∣

∣

sα+1
i−1

rh∆s.

Applying the definition of Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

, we get the following

estimate:
∥

∥

∥(λI +Br,h)
−1
∥

∥

∥

Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

)

→Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

)

≤
∥

∥

∥(λI +Br,h)
−1
∥

∥

∥

L1

(

R2
(r,h)

)

→L1

(

R2
(r,h)

) .

(12)
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From (12) and Theorem 1 it follows the following theorem:

Theorem 2. Let 0 < α < 1. Then, Br,h is a positive operator in

Wα
1

(

R
2
(r,h)

)

.

The proof of this statement is based on the following theorem:

Theorem 3. The spaces Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

and

Wα
1

(

R
2
(r,h)

)

are identical for 0 < α < 1 and their norms are equivalent uni-

formly in r and h.

Proof. First, let us prove that

∥

∥

∥
f r,h

∥

∥

∥

Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

) ≤ M (ω1, ω2)

(1− α)

∥

∥

∥
f r,h

∥

∥

∥

Wα
1

(

R2
(r,h)

) . (13)

Using formula (6), the definition of Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

and triangle in-

equality, we obtain
∥

∥

∥
f r,h

∥

∥

∥

Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

)

≤
∞
∑

i=2

∑

(xn,ym)∈R2
(r,h)

Ji

∣

∣

∣

∣

∣

f(xn,ym,ω)−f

(

xn+
ω1si−1√
ω2
1
+ω2

2

,ym+
ω2si−1√
ω2
1
+ω2

2

,ω

)
∣

∣

∣

∣

∣

sα+1
i−1

rh,

where

Ji =

∞
∫

0

λα

√

ω2
1 + ω2

2

sα+1
i−1 ∆s

(

1 + λ∆s√
ω2
1+ω2

2

)i
dλ.

The change of variable λ∆s√
ω2
1+ω2

2

= y yields (see [6])

Ji =

(

√

ω2
1 + ω2

2

)α
∞
∫

0

ti−1e−t (i− 1)α+1

(i− 1)!

∞
∫

0

yαe−tydydt.

The change of variables ty = z yields

Ji =

(

√

ω2
1 + ω2

2

)α

Γ (α+ 1)

∞
∫

0

e−tti−1−α−1 (i− 1)α

(i− 2)!
dt
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=

(

√

ω2
1 + ω2

2

)α (i− 1)α+1 Γ (α+ 1) Γ (i− α− 1)

Γ (i)
.

Recall Gautschi’s inequality (see [24]) which says that for any
0 < s < 1 and n = 1, 2, 3, ...

Γ (n+ s)

Γ (n+ 1)
≤ ns−1.

Since

Γ (i− α− 1) =
Γ (i− α)

(i− α− 1)
,

and making substitution n = i − 1 and s = 1 − α in Gautschi’s inequality, we
obtain

Γ (i− α)

Γ (i)
≤ (i− 1)−α .

So, we can write

Ji ≤
(

√

ω2
1 + ω2

2

)α

Γ (α+ 1)
(i− 1)

(i− α− 1)
≤ M (ω1, ω2)

(1− α)

for i ≥ 2 and 0 < α < 1. The last inequality yields

∥

∥

∥f r,h
∥

∥

∥

Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

) ≤ M (ω1, ω2)

(1− α)

∥

∥

∥f r,h
∥

∥

∥

Wα
1

(

R2
(r,h)

) .

Thus, we have proved that

Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

⊂ Wα
1

(

R
2
(r,h)

)

. (14)

Let us prove the reverse inclusion

Wα
1

(

R
2
(r,h)

)

⊂ Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

. (15)

Applying formula (6), we can write

f (xn, ym, ω)

=
∞
∫

0

∆s√
ω2
1+ω2

2

∞
∑

i=1
Rif̃

(

xn + ω1si−1√
ω2
1+ω2

2

, ym + ω2si−1√
ω2
1+ω2

2

, ω

)

dλ,

(16)
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where f̃ (xn, ym, ω) = Br,h (λI +Br,h)
−1 f (xn, ym, ω) .

From (16) it follows that

f

(

xn +
ω1sj√
ω2
1+ω2

2

, ym +
ω2sj√
ω2
1+ω2

2

, ω

)

=
∞
∫

0

∆s√
ω2
1+ω2

2

∞
∑

i=1
Ri

×f̃

(

xn +
ω1si−1√
ω2
1+ω2

2

+
ω1sj√
ω2
1+ω2

2

, ym +
ω2si−1√
ω2
1+ω2

2

+
ω2sj√
ω2
1+ω2

2

, ω

)

dλ.

(17)

Using identities (16) and (17), we obtain

f (xn, ym, ω)− f

(

xn +
ω1sj√
ω2
1+ω2

2

, ym +
ω2sj√
ω2
1+ω2

2

, ω

)

=
∞
∫

0

∆s√
ω2
1+ω2

2

{

∞
∑

i=1
Rif̃

(

xn + ω1si−1√
ω2
1+ω2

2

, ym + ω2si−1√
ω2
1+ω2

2

, ω

)

−
∞
∑

i=1
Rif̃

(

xn +
ω1si+j−1√

ω2
1+ω2

2

, ym +
ω2si+j−1√

ω2
1+ω2

2

, ω

)}

dλ.

The change of variable i = k, i = k − j, and k = i+ j yields

f (xn, ym, ω)− f

(

xn +
ω1sj√
ω2
1+ω2

2

, ym +
ω2sj√
ω2
1+ω2

2

, ω

)

=
∞
∫

0

∆s√
ω2
1+ω2

2

{

j
∑

k=1

Rkf̃

(

xn +
ω1sk−1√
ω2
1+ω2

2

, ym +
ω2sk−1√
ω2
1+ω2

2

, ω

)

−
∞
∑

k=j+1

[

Rk −Rk−j
]

f̃

(

xn +
ω1sk−1√
ω2
1+ω2

2

, ym +
ω2sk−1√
ω2
1+ω2

2

, ω

)

}

dλ.

Performing the change of variable j = i+ 1, we get

f (xn, ym, ω)− f

(

xn + ω1si−1√
ω2
1+ω2

2

, ym + ω2si−1√
ω2
1+ω2

2

, ω

)

=
∞
∫

0

∆s√
ω2
1+ω2

2

{

i−1
∑

k=1

Rkf̃

(

xn +
ω1sk−1√
ω2
1+ω2

2

, ym +
ω2sk−1√
ω2
1+ω2

2

, ω

)

−
∞
∑

k=i

[

Rk −Rk−i+1
]

f̃

(

xn +
ω1sk−1√
ω2
1+ω2

2

, ym +
ω2sk−1√
ω2
1+ω2

2

, ω

)}

dλ.

Taking sum, using the triangle inequality, and performing change of
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f̃ (xn, ym, ω) = Br,h (λI +Br,h)
−1 f (xn, ym, ω) , we have

∑

(xn,ym)∈R2
(r,h)

∞
∑

i=1

∣

∣

∣

∣

∣

f(xn,ym,ω)−f

(

xn+
ω1si−1√
ω2
1
+ω2

2

,ym+
ω2si−1√
ω2
1
+ω2

2

,ω

)
∣

∣

∣

∣

∣

sα+1
i−1

rh∆s

≤ (M1 +M2)
∞
∫

0

∑

(xn,ym)∈R2
(r,h)

∣

∣

∣λαBr,h (λI +Br,h)
−1 f (xn, ym, ω)

∣

∣

∣ rhdλ
λ
,

(18)

where

M1 =

∣

∣

∣

∣

∞
∑

i=1
s−α−1
i−1

(∆s)2√
ω2
1+ω2

2

λ1−α
i−1
∑

k=1

Rk

∣

∣

∣

∣

,

M2 =

∣

∣

∣

∣

∞
∑

i=1
s−α−1
i−1

(∆s)2√
ω2
1+ω2

2

λ1−α
∞
∑

k=i

[

Rk −Rk−i+1
]

∣

∣

∣

∣

.

Let us estimate M1 and M2, separately. First, let us estimate M1:

M1 =

∣

∣

∣

∣

∣

∞
∑

i=1
(iλ∆s)−α−1λ∆s

(

1−
(

1 + λ∆s√
ω2
1+ω2

2

)−i
)∣

∣

∣

∣

∣

.

The change of variables λ∆s = ∆ρ yields

M1 =

∣

∣

∣

∣

∣

∞
∑

i=1
(i∆ρ)−α−1

(

1−
(

1 + λ∆s√
ω2
1+ω2

2

)−i
)

∆ρ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∞
∫

0

ρ−α−1 (1− e−ρ) dρ

∣

∣

∣

∣

≤ 1
α(1−α) .

(19)

Actually, applying the inequality e−τ ≥ 1− τ , we obtain

∞
∫

0

1− e−τ

τα+1
dτ ≤

1
∫

0

τ−αdτ +

∞
∫

1

τ−α−1dτ =
1

α
+

1

1− α
=

1

α (1− α)
.

Now, let us estimate M2:

M2 =

∣

∣

∣

∣

∞
∑

i=1
s−α−1
i−1

(∆s)2√
ω2
1+ω2

2

λ1−α
(

Ri

1−R
− R

1−R

)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

i=1
(iλ∆s)−α−1

(

1−
(

1 + λ∆s√
ω2
1+ω2

2

)−i
)

λ∆s

∣

∣

∣

∣

∣

.

(20)
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The change of variables λ∆s = ∆ρ yields

M2 =

∣

∣

∣

∣

∣

∞
∑

i=1
(i∆ρ)−α−1

(

1−
(

1 + ∆ρ√
ω2
1+ω2

2

)−i
)

∆ρ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∞
∫

0

ρ−α−1 (1− e−ρ) dρ

∣

∣

∣

∣

≤ 1
α(1−α) .

(21)

Using identity (18) and combining estimates (19) and (21), we get

∑

(xn,ym)∈R2
(r,h)

∞
∑

i=1

∣

∣

∣

∣

∣

f(xn,ym,ω)−f

(

xn+
ω1si−1√
ω2
1
+ω2

2

,ym+
ω2si−1√
ω2
1
+ω2

2

,ω

)
∣

∣

∣

∣

∣

sα+1
i−1

rh∆s

≤ 2
α(1−α)

∞
∫

0

∑

(xn,ym)∈R2
(r,h)

∣

∣

∣λαBr,h (λI +Br,h)
−1 f (xn, ym, ω)

∣

∣

∣ rhdλ
λ
.

(22)

This means that the following inequality holds:

∥

∥

∥
f r,h

∥

∥

∥

Wα
1

(

R2
(r,h)

) ≤ 2

α (1− α)

∥

∥

∥
f r,h

∥

∥

∥

Eα,1

(

L1

(

R2
(r,h)

)

, Br,h

) . (23)

This completes the proof of Theorem 3.

5. Applications

In this section we consider the application of results of Sections 3 and 4. We
consider the difference scheme



















uk
n,m−uk−1

n,m

τ
− ω1

uk
n,m−uk

n,m−1

r
− ω2

uk
n−1,m−uk

n−1,m−1

h

= f (tk, xn, ym) ,
tk = kτ, 1 ≤ k ≤ N, Nτ = T, (xn,ym) ∈ R

2
(r,h)

u(0, xn, ym) = ϕ (xn, ym) , (xn, ym) ∈ R
2
(r,h)

(24)

for the numerical solution of initial value problem










∂u(t,x,y)
∂t

− ω1
∂u(t,x,y)

∂x
− ω2

∂u(t,x,y)
∂y

= f (t, x, y) ,

(x, y) ∈ R
2, 0 ≤ t ≤ T,

u(0, x, y) = ϕ (x, y) , (x, y) ∈ R
2.

(25)



POSITIVITY OF THE DIFFERENCE... 335

Theorem 4. Let 0 < α < 1. Then, for the solution of difference scheme
(24) we have the following stability inequality:

N
∑

k=1

τ
∥

∥

∥

(

uk
)r,h
∥

∥

∥

Wα
1

(

R2
(r,h)

)

≤ M (α)

[

∥

∥ϕr,h
∥

∥

Wα
1

(

R2
(r,h)

) +
N
∑

k=1

τ
∥

∥

∥

(

fk
)r,h
∥

∥

∥

Wα
1

(

R2
(r,h)

)

]

.

(26)

The proof of Theorem 4 is based on Theorem 1 on the positivity of the
difference neutron transport operator B(r,h) = −A(r,h) defined by the formula

(2), on Theorem 3 on the structure of fractional space Wα
1

(

R
2
(r,h)

)

, and on the

following theorem on stability of difference scheme (24) for the approximate
solution of abstract initial value problem (25).

Theorem 5. Let B(r,h) be a positive operator in a Banach space

Eα,1

(

L1

(

R
2
(r,h)

)

, Br,h

)

. Then, for the solution of difference scheme (24) the

following stability inequality holds:

N
∑

k=1

τ
∥

∥

∥uk
∥

∥

∥

Eα,1

(

R2
(r,h)

) ≤ M

[

‖ϕ‖
Eα,1

(

R2
(r,h)

) +

N
∑

k=1

τ
∥

∥

∥fk
∥

∥

∥

Eα,1

(

R2
(r,h)

)

]

.
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